题目内容
| m | 4 |
分析:子弹射入A中,A获得速度,向右压缩弹簧,B在弹簧的弹力作用下做加速运动,直到弹簧恢复原长为至,之后,B开始减速,所以当弹簧第一次恢复原长时,B获得的动能最大,根据A、B和弹簧组成的系统动量守恒和机械能守恒列式,即可求得B的最大速度,从而得到最大动能.
解答:解:子弹射入滑块A后两者的共同速度为v1.以两者组成的系统为研究对象,取向右方向为正方向.根据动量守恒得:
mv=(m+
m)v1
解得:v1=
v.
子弹射入滑块A后压缩弹簧的过程,A、B和弹簧组成的系统动量守恒和机械能守恒,当弹簧第一次恢复原长时,B获得的动能最大.则得:
(m+
m)v1=(m+
m)vA+mvB
(m+
m)v12=
(m+
m)
+
m
解得:vB=
v1=
v
动能为 EkB=
m
=
mv2.
答:当弹簧第一次恢复原长时,B获得的动能最大.其值为
mv2.
| 1 |
| 4 |
| 1 |
| 4 |
解得:v1=
| 1 |
| 5 |
子弹射入滑块A后压缩弹簧的过程,A、B和弹簧组成的系统动量守恒和机械能守恒,当弹簧第一次恢复原长时,B获得的动能最大.则得:
(m+
| 1 |
| 4 |
| 1 |
| 4 |
(m+
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| v | 2 A |
| 1 |
| 2 |
| v | 2 B |
解得:vB=
2(m+
| ||
m+
|
| 2 |
| 9 |
动能为 EkB=
| 1 |
| 2 |
| v | 2 B |
| 2 |
| 81 |
答:当弹簧第一次恢复原长时,B获得的动能最大.其值为
| 2 |
| 81 |
点评:分析清楚物体的运动过程是正确解题的关键,分析清楚运动过程后,应用动量守恒定律与机械能守恒定律即可正确解题.
练习册系列答案
相关题目