ÌâÄ¿ÄÚÈÝ
£¨1£©Ó͵οªÊ¼ÏÂÂäʱÀëÉϰåµÄ¸ß¶ÈH£»
£¨2£©¿ª¹Ø¶Ï¿ªºó£¬Ó͵ÎÏÂÂä¹ý³ÌµÄ×Üʱ¼ät£®
·ÖÎö£º£¨1£©¶ÔÓ͵δӿªÊ¼ÏÂÂäµ½¾²Ö¹¹ý³ÌÀûÓö¯Äܶ¨ÀíÁз½³Ì¼´¿ÉÇó½â£»
£¨2£©Ó͵ÎÏÂÂä¹ý³ÌµÄ×Üʱ¼ätΪ×ÔÓÉÂäÌå½×¶ÎµÄʱ¼äÓëÔȼõËٽ׶εÄʱ¼äÖ®ºÍ£®
£¨2£©Ó͵ÎÏÂÂä¹ý³ÌµÄ×Üʱ¼ätΪ×ÔÓÉÂäÌå½×¶ÎµÄʱ¼äÓëÔȼõËٽ׶εÄʱ¼äÖ®ºÍ£®
½â´ð£º½â£º£¨1£©ÉèµçÔ´µç¶¯ÊÆÎªU£¬K±ÕºÏʱ£¬ÓÐmg=Eq£¬E=
£®
K¶Ï¿ªºó£¬ÓÐmg£¨H+d£©-qU=0£¬
µÃH=2d£®
£¨2£©½øÈëµç³¡Ç°£¬ÓÐH=
gt12£¬
µÃ£ºt1=
=2
£¬
¼ÓËٺͼõËÙ¹ý³Ìƽ¾ùËÙ¶ÈÏàͬ£¬Ôò£ºt2=
t1£¬
Ôò×Üʱ¼ät=t1+t2=3
£®
´ð£º£¨1£©Ó͵οªÊ¼ÏÂÂäʱÀëÉϰåµÄ¸ß¶ÈHΪ2d£»
£¨2£©¿ª¹Ø¶Ï¿ªºó£¬Ó͵ÎÏÂÂä¹ý³ÌµÄ×Üʱ¼ätΪ3
£®
| U |
| 3d |
K¶Ï¿ªºó£¬ÓÐmg£¨H+d£©-qU=0£¬
µÃH=2d£®
£¨2£©½øÈëµç³¡Ç°£¬ÓÐH=
| 1 |
| 2 |
µÃ£ºt1=
|
|
¼ÓËٺͼõËÙ¹ý³Ìƽ¾ùËÙ¶ÈÏàͬ£¬Ôò£ºt2=
| 1 |
| 2 |
Ôò×Üʱ¼ät=t1+t2=3
|
´ð£º£¨1£©Ó͵οªÊ¼ÏÂÂäʱÀëÉϰåµÄ¸ß¶ÈHΪ2d£»
£¨2£©¿ª¹Ø¶Ï¿ªºó£¬Ó͵ÎÏÂÂä¹ý³ÌµÄ×Üʱ¼ätΪ3
|
µãÆÀ£ºÔÚÔ˶¯µÄ¹ý³ÌÖУ¬²»¹âÊǵ糡Á¦×ö¹¦£¬Í¬Ê±»¹ÓÐÒºµÎµÄÖØÁ¦Ò²Òª×ö¹¦£¬ÔÚ·ÖÎöµÄʱºòҪעÒâÖØÁ¦×ö¹¦µÄÇé¿ö£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿