ÌâÄ¿ÄÚÈÝ
6£®Èçͼ1Ëùʾ£¬½«Ò»Ð¡Îï¿é´ÓÐ±Ãæ¶¥¶ËÓɾ²Ö¹ÊÍ·Å£¬Ð¡Îï¿é¾¹ýAµãºóµ½´ïµ×¶ËBµã£¬Ð¡Ã÷²â³öÁËABÖ®¼äµÄ¾àÀëºÍСÎï¿é¾¹ýABËùÓõÄʱ¼ä£¬¸Ä±äAµÄλÖ㬲â³ö¶à×éAB¼ä¾à¼°¾¹ýABËùÓõÄʱ¼ät£¬Ð¡Ã÷×÷³öÁËAB¶Îƽ¾ùËÙ¶È$\overline{v}$Óë¾¹ýʱ¼ätµÄͼÏó£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©| A£® | ÓÉͼÏó¿ÉÇó³öСÎï¿éµ½´ïBµãµÄËÙ¶È | |
| B£® | ÓÉͼÏó¿É֪СÎï¿é×öÔȼõËÙÖ±ÏßÔ˶¯ | |
| C£® | ͼÏߺÍtÖáËùΧµÄÃæ»ýµÈÓÚÐ±ÃæµÄ³¤¶È | |
| D£® | ÓÐͼÏó¿É֪СÎï¿éÔ˶¯µÄ¼ÓËÙ¶È´óСµÈÓÚ$\frac{v}{2{t}_{0}}$ |
·ÖÎö ÎïÌåÔÚÐ±ÃæÉÏÔȼÓËÙÏ»¬£¬¿ÉÓÉÆ½¾ùËٶȹ«Ê½$\overline{v}$=$\frac{{v}_{0}+v}{2}$ÇóBµãµÄËÙ¶È£®¸ÃͼÏó²»ÊÇËÙ¶Èʱ¼äͼÏ󣬯äÃæ»ý²»±íÊ¾Î»ÒÆ£®
½â´ð ½â£ºA¡¢ÓÉͼ֪£¬ÎïÌå´ÓAÔ˶¯µ½BµÄʱ¼äΪt0£¬Æ½¾ùËÙ¶ÈΪ$\overline{v}$=$\frac{v}{2}$£®ÉèÎïÌåµ½´ïBµãµÄËÙ¶ÈΪvB£®
Ð±ÃæµÄ³¤¶ÈL=$\overline{v}$t0=$\frac{v}{2}{t}_{0}$£¬ÓÉL=$\frac{0+{v}_{B}}{2}{t}_{0}$µÃ£¬vB=v£¬ËùÒÔ¿ÉÇó³öСÎï¿éµ½´ïBµãµÄËÙ¶È£¬¹ÊAÕýÈ·£®
B¡¢¸ÃͼÏó²»ÊÇËÙ¶Èʱ¼äͼÏó£¬ÓÉͼÏó²»ÄÜÈ·¶¨Îï¿é×öÔȼõËÙÖ±ÏßÔ˶¯£¬Îï¿é´Ó¾²Ö¹¿ªÊ¼²»¿ÉÄÜ×öÔȼõËÙÖ±ÏßÔ˶¯£¬¹ÊB´íÎó£®
C¡¢¸ÃͼÏó²»ÊÇËÙ¶Èʱ¼äͼÏó£¬Í¼ÏóÓë×ø±êÖáËùΧµÄÃæ»ý²»±íÊ¾Î»ÒÆ£¬Ôò֪ͼÏߺÍtÖáËùΧµÄÃæ»ý²»µÈÓÚÐ±ÃæµÄ³¤¶È£¬¹ÊC´íÎó£®
D¡¢ÓÉL=$\frac{1}{2}a{t}_{0}^{2}$£¬µÃa=$\frac{2L}{{t}_{0}^{2}}$=$\frac{2¡Á\frac{v}{2}{t}_{0}}{{t}_{0}^{2}}$=$\frac{v}{{t}_{0}}$£¬¹ÊD´íÎó£®
¹ÊÑ¡£ºA£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÊǶÁ³öÎï¿é´ÓAÔ˶¯µ½BµÄʱ¼äºÍƽ¾ùËÙ¶È£¬Òª×¢ÒâÆ½¾ùËÙ¶ÈͼÏóÓëËÙ¶ÈͼÏóµÄÇø±ð£¬²»Äܵ±×÷Ò»»ØÊ£®
| A£® | J/A | B£® | W/¦¸ | C£® | T•m2/s | D£® | T•A•m |
| A£® | ±äѹÆ÷Êä³öµçѹµÄƵÂÊΪ5Hz | |
| B£® | µçѹ±íV2µÄʾÊýΪ22$\sqrt{2}$V | |
| C£® | ÕÕÉäRµÄ¹â±äÇ¿£¬µÆÅÝL±ä°µ | |
| D£® | ÕÕÉäRµÄ¹â±äǿʱ£¬µçѹ±íV1¡¢µçÁ÷±íA1µÄʾÊý¶¼²»±ä |
| A£® | $\frac{2¦Ðn}{Rt}$$\sqrt{\frac{{g}_{0}}{L}}$-R | B£® | $\frac{Rt}{2¦Ðn}$$\sqrt{\frac{L}{{g}_{0}}}$-R | C£® | $\frac{2¦ÐRt}{n}$$\sqrt{\frac{L}{{g}_{0}}}$-R | D£® | $\frac{Rt}{2¦Ðn}$$\sqrt{\frac{{g}_{0}}{L}}$-R |
| A£® | ͼÖÐx=15m´¦µÄÖʵãÊǼÓÇ¿µã | |
| B£® | ͼÖÐx=21m´¦µÄPÖʵã¾Ê±¼ät=0.75³öÏÖËÙ¶È×î´óÖµ | |
| C£® | ´ËÁ½Áв¨ÏàÓö²»ÄÜ·¢Éú¸ÉÉæÏÖÏó | |
| D£® | ¸ÃÁ½²¨ÈçÒª·¢ÉúÃ÷ÏÔµÄÑÜÉäÏÖÏó£¬ËùÓöµ½µÄÕϰÎïµÄ³ß´çÒ»°ã²»´óÓÚ2cm |