ÌâÄ¿ÄÚÈÝ
2£®| A£® | Ô²»¡AB¶ÎÄÚµçÁ÷·½Ïò×ÜÊÇ´ÓAÁ÷ÏòB | |
| B£® | ת¶¯µÄǰ°ëÖÜÄÚABÁ½¶ËµçѹΪ$\frac{B¦Ø{L}^{2}}{2}$ | |
| C£® | ת¶¯µÄºó°ëÖÜÄÚͨ¹ýOµãµÄµçÁ¿Îª$\frac{¦ÐB{L}^{2}}{r}$ | |
| D£® | ÍâÁ¦¶ÔÏß¿ò×öµÄ¹¦Îª$\frac{¦Ð¦Ø{B}^{2}{L}^{4}}{2r}$ |
·ÖÎö ·ÖÎöµ¼ÏßµÄת¶¯£¬¸ù¾ÝÓÒÊÖ¶¨Ôò¿ÉÃ÷È·µçÁ÷µÄ·½Ïò£»¸ù¾ÝÐýתÇиî²úÉúµÄµç¶¯ÊƵıí´ïʽ¼°Å·Ä·¶¨ÂÉ¿ÉÇóµÃµçѹ£»Óɹ¦ÄܹØÏµ¿ÉÇó³öÍâÁ¦Ëù×öµÄ¹¦£®
½â´ð ½â£ºA¡¢ÔÚת¶¯µÄǰ°ëÖÜÄÚ£¬ÓÐЧÇиîµÄ²¿·ÖΪOB£¬ÓÉÓÒÊÖ¶¨Ôò¿ÉÖª£¬µçÁ÷ÓÉBµ½A£»ºóÃæÖÜÆÚÄÚÇиîµÄÓÐЧ³¤¶ÈΪAO£¬ÔòµçÁ÷ΪÓÉAÁ÷ÏòB£»¹ÊA´íÎó£»
B¡¢×ª¶¯µÄǰ°ëÖÜÆÚÄÚ£¬ÓÉÓÚABµç×è²»¼Æ£¬Ô²»¡Éϵĵçѹ¼´ÎªµçÔ´µÄµç¶¯ÊÆ£¬Çиî²úÉúµÄµç¶¯ÊÆE=$\frac{1}{2}$BL2¦Ø£»¹ÊBÕýÈ·£»
C¡¢×ª¶¯µÄºóÃæÖÜÆÚ£¬´ÅͨÁ¿µÄ±ä»¯Á¿¡÷¦µ=B$\frac{¦Ð{L}^{2}}{2}$£»¹ÊµçÁ¿Q=$\frac{¡÷¦µ}{R}$=$\frac{¦ÐB{L}^{2}}{2r}$£»¹ÊC´íÎó£»
D¡¢ÍâÁ¦×ö¹¦µÈÓÚ²úÉúµÄµçÄÜ£¬Ôò×ö¹¦W=I2rt=£¨$\frac{B{L}^{2}¦Ø}{2r}$£©2r¡Á$\frac{2¦Ð}{¦Ø}$=$\frac{¦Ð¦Ø{B}^{2}{L}^{4}}{2r}$£»¹ÊDÕýÈ·£»
¹ÊÑ¡£ºBD£®
µãÆÀ ±¾Ì⿼²éµ¼ÌåÐýתÇиî´Å¸ÐÏßµÄµç¶¯ÊÆ¼°µç·¹æÂɵÄÓ¦Óã¬Òª×¢ÒâÕýÈ··ÖÎöµç·½á¹¹£¬Ã÷È·¹¦ÄܹØÏµµÄÓ¦Óü´¿ÉÇó½â£®
| A£® | q1Óëq2ΪͬÖÖµçºÉ | |
| B£® | x=xO´¦µÄµç³¡Ç¿¶ÈE=0 | |
| C£® | ½«Ò»ÕýµãµçºÉ´ÓxO´¦ÑØxÖáÕý°ëÖáÒÆ¶¯£¬µç³¡Á¦ÏÈ×öÕý¹¦ºó×ö¸º¹¦ | |
| D£® | q1Óëq2µçºÉÁ¿´óС֮±ÈΪ£º$\frac{{q}_{1}}{{q}_{2}}$=$\frac{£¨{x}_{1}-{x}_{0}£©^{2}}{{{x}_{0}}^{2}}$ |
| A£® | S±ÕºÏʱ£¬AµÆÁÁ£¬È»ºóÖð½¥Ï¨Ãð | |
| B£® | S±ÕºÏʱ£¬BÁ¢¼´ÁÁ£¬È»ºóÖð½¥Ï¨Ãð | |
| C£® | S±ÕºÏ×ã¹»³¤Ê±¼äºó£¬B·¢¹â£¬¶øA²»·¢¹â | |
| D£® | S±ÕºÏ×ã¹»³¤Ê±¼äºóÔÙ¶Ï¿ª£¬BÁ¢¼´Ï¨Ã𣬶øAÖð½¥Ï¨Ãð |
| A£® | ÔÚt0¡«3t0µÄʱ¼äÄÚ£¬Æ½¾ùËÙ¶È$\overline{v}$£¾$\frac{{v}_{1}+{v}_{2}}{2}$ | |
| B£® | ½µÂäÉ¡´ò¿ªºó£¬½µÂäÉ¡ºÍÉ¡±øËùÊܵÄ×èÁ¦Ô½À´Ô½´ó | |
| C£® | ÔÚ0¡«t0ʱ¼äÄÚ¼ÓËٶȲ»±ä£¬ÔÚt0¡«3t0ʱ¼äÄÚ¼ÓËٶȱä´ó | |
| D£® | ÈôµÚÒ»¸öÉ¡±øÔÚ¿ÕÖдò¿ª½µÂäɡʱµÚ¶þ¸öÉ¡±øÁ¢¼´ÌøÏ£¬ÔòËûÃÇÔÚ¿ÕÖеľàÀëÏÈÔö´óºó¼õС |