题目内容
【题目】如图所示,一带电量为﹣q的小球,质量为m,以初速度v0从水平地面竖直向上射入水平方向的匀强磁场中、磁感应强度
,方向垂直纸面向外.图中b为轨迹最高点,重力加速度为g.则小球从地面射出到第一次到达最高点过程中( )
![]()
A.小球到达最高点时速率为0
B.小球距射出点的最大高度差为![]()
C.小球从抛出到第一次到达最高点所用时间为![]()
D.最高点距射出点的水平位移为![]()
【答案】BC
【解析】
A.取一水平向右的速度v1,使qv1B=mg,向左的速度v2,此时有v1=v2=v0;小球的运动可看作一沿水平向右的匀速直线运动和以v2和v0的合速度为初速度的匀速圆周运动,其合速度大小为
v0,小球到达最高点时竖直方向速率为零,在最高点速率为(
﹣1)v0;故A错误;
B.水平方向利用动量定理,有:![]()
即为:qBh=m(
﹣1)v0
代入数据,得:h=
,故B正确;
C.匀速圆周运动的初速度方向和水平方向成45°斜向上,则小球到最高点的时间为:
,故C正确;
D.设水平位移为x,竖直方向利用动量定理,有:![]()
即为:qBx+mgt=mv0,
代入数据,得:
,故D错误;
练习册系列答案
相关题目