ÌâÄ¿ÄÚÈÝ
8£®| A£® | ÎÀÐǵļÓËÙ¶ÈΪ$\frac{{R}^{2}g}{{r}^{2}}$ | |
| B£® | ÔÚÎÀÐÇ·µ»ØµØÃæµÄ¹ý³ÌÖÐÍòÓÐÒýÁ¦¼õÈõÖØÁ¦Ôö´ó | |
| C£® | ÎÀÐÇÓÉλÖÃAÔ˶¯µ½Î»ÖÃBÐèÒªµÄʱ¼äΪ$\frac{¦Ðr}{3R}$$\sqrt{\frac{r}{g}}$ | |
| D£® | ÎÀÐÇÓÉλÖÃAÔ˶¯µ½Î»ÖÃBµÄ¹ý³ÌÖÐÍòÓÐÒýÁ¦×ö¹¦ÎªÁã |
·ÖÎö ÔÚµØÇò±íÃæÖØÁ¦ÓëÍòÓÐÒýÁ¦ÏàµÈ£¬ÍòÓÐÒýÁ¦ÌṩÎÀÐÇÔ²ÖÜÔ˶¯µÄÏòÐÄÁ¦£¬ÎÀÐÇͨ¹ý×ö½üÐÄÔ˶¯»òÀëÐÄÔ˶¯À´ÊµÏÖ¹ìµÀλÖõĵ÷Õû£®
½â´ð ½â£ºA¡¢ÔÚµØÇò±íÃæÖØÁ¦ÓëÍòÓÐÒýÁ¦ÏàµÈ£¬ÔÚÎÀÐÇ´¦ÍòÓÐÒýÁ¦ÌṩԲÖÜÔ˶¯ÏòÐÄÁ¦£¬¹ÊÓУº
$G\frac{Mm}{{R}_{\;}^{2}}=mg$£¬$G\frac{Mm}{{r}_{\;}^{2}}=ma$£¬ÓÉÁ½Ê½¿ÉµÃÁ½¿ÅÎÀÐǵļÓËÙ¶È´óС¾ùΪ$a=\frac{g{R}_{\;}^{2}}{{r}_{\;}^{2}}$£¬¹ÊAÕýÈ·£»
B¡¢ÎÀÐÇÔÚ·µ»ØµØÃæµÄ¹ý³ÌÖУ¬ÓëµØÐĵľàÀë¼õС£¬¸ù¾ÝÍòÓÐÒýÁ¦¶¨ÂÉ$F=G\frac{Mm}{{r}_{\;}^{2}}$£¬ÖªÍòÓÐÒýÁ¦Ôö´ó£¬Ô½¿¿½üµØÇò±íÃæÖØÁ¦¼ÓËÙ¶ÈÔ½´ó£¬ÖØÁ¦Ô½´ó£¬¹ÊB´íÎó£»
C¡¢ÓÉAÖª£¬ÎÀÐǵÄÏòÐļÓËÙ¶Èa=$\frac{{R}_{\;}^{2}}{{r}_{\;}^{2}}g$=$\frac{4{¦Ð}_{\;}^{2}}{{T}_{\;}^{2}}r$£¬¿ÉµÃÎÀÐǵÄÖÜÆÚ$T=2¦Ð\frac{r}{R}\sqrt{\frac{r}{g}}$£¬ËùÒÔ´ÓAÔ˶¯µ½BËùÓÃʱ¼ät=$\frac{60¡ã}{360¡ã}T=\frac{¦Ðr}{3R}\sqrt{\frac{r}{g}}$£¬¹ÊCÕýÈ·£»
D¡¢ÎÀÐÇ1×öÔÈËÙÔ²ÖÜÔ˶¯ÍòÓÐÒýÁ¦ÌṩԲÖÜÔ˶¯ÏòÐÄÁ¦£¬¼´ÒýÁ¦Ê¼ÖÕÓëËÙ¶È·½Ïò´¹Ö±£¬¹ÊÍòÓÐÒýÁ¦¶ÔÎÀÐDz»×ö¹¦£¬¹ÊDÕýÈ·£®
¹ÊÑ¡£ºACD£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÍòÓÐÒýÁ¦Ó¦ÓÃÎÊÌâ£¬ÕÆÎÕÐÇÇò±íÃæÖØÁ¦ÓëÍòÓÐÒýÁ¦ÏàµÈ£¬»·ÈÆÌìÌåÈÆÖÐÐÄÌìÌåÔ²ÖÜÔ˶¯ÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£®
| A£® | M¡¢m¼äµÄĦ²ÁÁ¦¶Ôm²»×ö¹¦ | |
| B£® | M¡¢m¼äµÄĦ²ÁÁ¦¶Ôm×ö¸º¹¦ | |
| C£® | F¶ÔMËù×öµÄ¹¦Óëm¶ÔMËù×öµÄ¹¦µÄ¾ø¶ÔÖµÏàµÈ | |
| D£® | M¡¢m¼äµÄµ¯Á¦¶Ôm×öÕý¹¦ |