ÌâÄ¿ÄÚÈÝ
17£®±±¾©Ê±¼ä12ÔÂ17ÈÕ£¬2014-2015Èü¼¾CBAµÚ20ÂÖÈüÊÂÈ«ÃæÕ¹¿ª£®ÔÚÒ×½¨Áª´øÁìÏ£¬¹ã¶«¶Ó×øÕóÖ÷³¡Õ½Ê¤ÌôÕ½µÄ±±¾©¶Ó£®±ÈÈüÖÐÒ×½¨Áª¶à´ÎÍê³É¾«²ÊÌøÍ¶£®ÔÚÌÚ¿ÕÔ¾Æðµ½Â仨µØÃæµÄÌøÍ¶¹ý³ÌÖУ¬ÈôºöÂÔ¿ÕÆø×èÁ¦£¬ÔòÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©| A£® | Ò×½¨ÁªÔÚϽµ¹ý³ÌÖд¦ÓÚÊ§ÖØ×´Ì¬ | |
| B£® | Ò×½¨ÁªÆðÌøÒÔºóÔÚÉÏÉý¹ý³ÌÖд¦ÓÚ³¬ÖØ×´Ì¬ | |
| C£® | Ò×½¨ÁªÆðÌøÊ±µØÃæ¶ÔËûµÄÖ§³ÖÁ¦Ð¡ÓÚËûµÄÖØÁ¦ | |
| D£® | Ò×½¨ÁªÆðÌøÊ±µØÃæ¶ÔËûµÄÖ§³ÖÁ¦µÈÓÚËûµÄÖØÁ¦ |
·ÖÎö ÔÚÕû¸öÌø¸ß¹ý³ÌÖУ¬Ö»ÊÜÖØÁ¦×÷Ó㬴¦ÓÚÊ§ÖØ×´Ì¬£»ÆðÌøÊ±£¬ÓÐÏòÉϵļÓËÙ¶È£¬µØÃæ¶ÔËûµÄÖ§³ÖÁ¦´óÓÚËýµÄÖØÁ¦£»ÎïÌåÖØÐĵÄλÖÃÓëÖÊÁ¿·Ö²¼ºÍÐÎ×´Óйأ®
½â´ð ½â£ºA¡¢B¡¢ÔÚÆðÌø¹ý³ÌºÍϽµ¹ý³ÌÖУ¬Ö»ÊÜÖØÁ¦×÷Ó㬴¦ÓÚÊ§ÖØ×´Ì¬£®¹ÊAÕýÈ·£¬B´íÎó£»
C¡¢D¡¢ÆðÌøÊ±£¬ÓÐÏòÉϵļÓËÙ¶È£¬ÔòµØÃæ¶ÔËûµÄÖ§³ÖÁ¦´óÓÚËýµÄÖØÁ¦£®¹ÊCD´íÎó£®
¹ÊÑ¡£ºA£®
µãÆÀ ±¾Ì⿼²éÓ¦ÓÃÎïÀí֪ʶ·ÖÎöʵ¼ÊÎÊÌâµÄÄÜÁ¦£¬Áé»îÓ¦ÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉ·ÖÎö³¬Ê§ÖØÎÊÌâºÍƽºâÎÊÌ⣬ÀíÂÛÁªÏµÊµ¼Ê½ÏÇ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
7£®ÈçͼËùʾ£¬Èý½ÇÐÎÏßȦabc·ÅÔÚ·¶Î§×ã¹»´óµÄÔÈÇ¿´Å³¡Öв¢×öÏÂÁÐÔ˶¯£¬ÄܲúÉú¸ÐÓ¦µçÁ÷µÄÊÇ£¨¡¡¡¡£©

| A£® | ÏòÉÏÆ½ÒÆ | B£® | ÏòÓÒÆ½ÒÆ | C£® | ÏòÀïÆ½ÒÆ | D£® | ÒÔabΪÖáת¶¯ |
8£®
Ò»¸öÎïÌåÑØÖ±ÏßÔ˶¯£¬´Ót=0ʱ¿Ì¿ªÊ¼£¬ÎïÌåµÄv-tµÄͼÏóÈçͼËùʾ£¬Í¼ÏßÓë×ݺá×ø±êÖáµÄ½»µã·Ö±ðΪ0.5m/sºÍ-1s£¬ÓÉ´Ë¿ÉÖª£¨¡¡¡¡£©
| A£® | ÎïÌå×öÔÈËÙÖ±ÏßÔ˶¯ | B£® | ÎïÌå×ö±ä¼ÓËÙÖ±ÏßÔ˶¯ | ||
| C£® | ÎïÌåµÄ³õËÙ¶È´óСΪ0.5m/s | D£® | ÎïÌåµÄ³õËÙ¶È´óСΪ1m/s |
12£®
¡°æÏ¶ðÈýºÅ¡±µÄ»·Ô¹ìµÀ¿É½üËÆ¿´³ÉÊÇÔ²¹ìµÀ£®¹Û²ì¡°æÏ¶ðÈýºÅ¡±ÔÚ»·Ô¹ìµÀÉϵÄÔ˶¯£¬·¢ÏÖÿ¾¹ýʱ¼ätͨ¹ýµÄ»¡³¤Îªl£¬¸Ã»¡³¤¶ÔÓ¦µÄÔ²ÐĽÇΪ¦È £¨»¡¶È£©£¬ÈçͼËùʾ£®ÒÑÖªÒýÁ¦³£Á¿ÎªG£¬ÓÉ´Ë¿ÉÍÆµ¼³öÔÂÇòµÄÖÊÁ¿Îª£¨¡¡¡¡£©
| A£® | $\frac{l^3}{{G¦È{t^2}}}$ | B£® | $\frac{{{l^3}¦È}}{{G{t^2}}}$ | C£® | $\frac{{{l^{\;}}}}{{G¦È{t^2}}}$ | D£® | $\frac{l^2}{{G¦È{t^2}}}$ |
2£®
ÈçͼËùʾ£¬Ò»×ã¹»³¤µÄľ°å¾²Ö¹ÔÚ¹â»¬Ë®Æ½ÃæÉÏ£¬Ò»Îï¿é¾²Ö¹ÔÚľ°åÉÏ£¬Ä¾°åºÍÎï¿é¼äÓÐĦ²Á£®ÏÖÓÃˮƽÁ¦ÏòÓÒÀľ°å£¬ÔÚÎï¿éÏà¶Ôľ°åÔ˶¯¹ý³ÌÖУ¬³·µôÀÁ¦£¬´Ëºóľ°åºÍÎï¿éÏà¶ÔÓÚË®Æ½ÃæµÄÔ˶¯Çé¿öΪ£¨¡¡¡¡£©
| A£® | Îï¿éÏòÓÒÔ˶¯£¬ËÙ¶ÈÖð½¥Ôö´ó£¬Ö±µ½×öÔÈËÙÔ˶¯ | |
| B£® | Îï¿éÏÈÏò×óÔ˶¯£¬ÔÙÏòÓÒÔ˶¯ | |
| C£® | ľ°åÏòÓÒÔ˶¯£¬ËÙ¶ÈÖð½¥±äС£¬Ö±µ½×öÔÈËÙÔ˶¯ | |
| D£® | ľ°åºÍÎï¿éµÄËٶȶ¼Öð½¥±äС£¬Ö±µ½ÎªÁã |
9£®ÎªÁË̽²âXÐÇÇò£¬ÔØ×ŵǽ²ÕµÄ̽²â·É´¬ÈƸÃÐÇÇò×öÔ²ÖÜÔ˶¯µÄ°ë¾¶Îªr1£¬ÖÜÆÚΪT1£®ËæºóµÇ½²ÕÍÑÀë·É´¬£¬±ä¹ìµ½ÀëÐÇÇò¸ü½üµÄ°ë¾¶Îªr2µÄÔ²¹ìµÀÉÏÔ˶¯£¬ÒýÁ¦³£Á¿ÎªG£®Ôò£¨¡¡¡¡£©
| A£® | XÐÇÇòµÄÖÊÁ¿ÎªM=$\frac{4¦Ð{r}_{1}^{3}}{G{{T}_{1}}^{2}}$ | |
| B£® | XÐÇÇò±íÃæµÄÖØÁ¦¼ÓËÙ¶ÈΪgx=$\frac{4{¦Ð}^{2}{r}_{1}}{{T}_{1}^{2}}$ | |
| C£® | µÇ½²ÕÔڰ뾶Ϊr2µÄ¹ìµÀÉÏ×öÔ²ÖÜÔ˶¯µÄÖÜÆÚΪT2=T1$\sqrt{\frac{{r}_{1}^{3}}{{r}_{2}^{3}}}$ | |
| D£® | µÇ½²ÕÔڰ뾶Ϊr1Óër2¹ìµÀÉÏÔ˶¯Ê±µÄÏßËÙ¶È´óС֮±ÈΪ$\frac{{v}_{1}}{{v}_{2}}$=$\sqrt{\frac{{r}_{2}}{{r}_{1}}}$ |
7£®ÏÂÁк˷´Ó¦·½³Ì¼°Æä±íÊö²»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ${\;}_{2}^{3}$He+${\;}_{1}^{2}$H¡ú${\;}_{2}^{4}$He+${\;}_{1}^{1}$HÊǾ۱䷴Ӧ | |
| B£® | ${\;}_{92}^{238}$U¡ú${\;}_{90}^{234}$Th+${\;}_{2}^{4}$HeÊÇÈ˹¤×ª±ä | |
| C£® | ${\;}_{92}^{235}$U+${\;}_{0}^{1}$n¡ú${\;}_{36}^{92}$Kr+${\;}_{56}^{141}$Ba+3${\;}_{0}^{1}$nÊÇÁѱ䷴Ӧ | |
| D£® | ${\;}_{90}^{234}$Th¡ú${\;}_{91}^{234}$Pa+${\;}_{-1}^{0}$eÊǦÂË¥±ä·½³Ì |