ÌâÄ¿ÄÚÈÝ
14£®·ÖÎö ÎÀÐÇÈÆµØÇò×öÔÈËÙÔ²ÖÜÔ˶¯£¬¸ù¾ÝÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦½áºÏ»Æ½ð´ú»»Ê½Çó½âÎÀÐÇÖÜÆÚ£¬µ±ÎÀÐÇÔ˶¯µ½BµãÕýÉÏ·½Ê±£¬¼¤¹âÒ²¸ÕºÃÔ˶¯µ½ÎÀÐÇλÖã¬Ç¡ºÃ´Ý»Ù£¬´Ó¶øÇó³öʱ¼ä£®
½â´ð ½â£ºÎÀÐÇÈÆµØÇò×öÔÈËÙÔ²ÖÜÔ˶¯£¬¸ù¾ÝÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦µÃ£º
$G\frac{Mm}{£¨R+h£©^{2}}=m\frac{4{¦Ð}^{2}£¨R+h£©}{{T}^{2}}$
ÔÚµØÇò±íÃæ£¬ÍòÓÐÒýÁ¦µÈÓÚÖØÁ¦£¬ÔòÓУº
$G\frac{Mm}{{R}^{2}}=mg$
½âµÃ£ºT=$\sqrt{\frac{4{¦Ð}^{2}£¨R+h£©^{3}}{g{R}^{2}}}$
ÔòÎÀÐÇÔ˶¯µ½BµãÕýÉÏ·½µÄʱ¼ä${t}_{1}=\frac{T}{2}=\sqrt{\frac{{¦Ð}^{2}{£¨R+h£©}^{3}}{g{R}^{2}}}$£¬
¼¤¹âÔ˶¯µ½h¸ß¶ÈµÄʱ¼ä${t}_{2}=\frac{h}{c}$£¬
Ôò·¢É伤¹âµÄʱ¼ät=t1-t2=$\sqrt{\frac{{¦Ð}^{2}{£¨R+h£©}^{3}}{g{R}^{2}}}-\frac{h}{c}$
´ð£º´ÓͼʾλÖÿªÊ¼ÖÁÉÙ¾¹ý$\sqrt{\frac{{¦Ð}^{2}{£¨R+h£©}^{3}}{g{R}^{2}}}-\frac{h}{c}$ʱ¼ä²Å¿ÉÒÔ·¢É伤¹â£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦¼°»Æ½ð´ú»»Ê½µÄÖ±½ÓÓ¦Ó㬽âÌâʱҪ֪µÀÔÚµØÇò±íÃæ£¬ÍòÓÐÒýÁ¦µÈÓÚÖØÁ¦£¬ÄѶȲ»´ó£¬ÊôÓÚ»ù´¡Ì⣮
| A£® | ÎïÌåµÄºÏÁ¦ÎªÁã | |
| B£® | ÎïÌåµÄºÏÁ¦´óС²»±ä£¬·½ÏòʼÖÕÖ¸ÏòÔ²ÐÄO | |
| C£® | ÎïÌåµÄºÏÁ¦¾ÍÊÇÏòÐÄÁ¦ | |
| D£® | ÎïÌåºÏÁ¦·½ÏòʼÖÕÓëÆäÔ˶¯·½Ïò²»´¹Ö±£¨³ý×îµÍµã£© |
| A£® | µ½´ïµ×²¿Ê±ÖØÁ¦µÄ¹¦ÂÊÏàµÈ | B£® | µ½´ïµ×²¿Ê±ËÙ¶ÈÏàͬ | ||
| C£® | Ï»¬¹ý³ÌÖÐÖØÁ¦×öµÄ¹¦ÏàµÈ | D£® | µ½´ïµ×²¿Ê±¶¯ÄÜÏàµÈ |