ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬ÔÚ×ã¹»´óµÄ¹â»¬Ë®Æ½ÃæÉÏ·ÅÓÐÁ½Îï¿éAºÍB£¬ÒÑÖªmA£¾mB£¬AÎï¿éÁ¬½ÓÒ»¸öÇᵯ»É²¢´¦ÓÚ¾²Ö¹×´Ì¬£¬BÎï¿éÒÔ³õËÙ¶Èv0Ïò×ÅAÎï¿éÔ˶¯£®ÔÚBÎï¿éÓ뵯»É×÷Óùý³ÌÖУ¬Á½Îï¿éʼÖÕÔÚͬһÌõÖ±ÏßÉÏÔ˶¯£¬ÏÂÁÐÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©

| A£®µ¯»É»Ö¸´Ô³¤Ê±£¬BÎï¿éµÄËÙ¶ÈΪÁã |
| B£®µ¯»É»Ö¸´Ô³¤Ê±£¬BÎï¿éµÄËٶȲ»ÎªÁ㣬ÇÒ·½ÏòÏò×ó |
| C£®ÔÚµ¯»ÉѹËõ¹ý³ÌÖУ¬BÎï¿é¶¯ÄÜÏȼõСºóÔö´ó |
| D£®ÔÚÓ뵯»ÉÏ໥×÷ÓõÄÕû¸ö¹ý³ÌÖУ¬BÎï¿éµÄ¶¯ÄÜÏȼõСºóÔö´ó |
A¡¢BÉ赯»É»Ö¸´Ô³¤Ê±£¬A¡¢BµÄËÙ¶È·Ö±ðΪvAºÍvB£®¸ù¶¯Á¿ÊغãºÍ»úеÄÜÊØºãµÃ
mBv0=mAvA+mBvB£¬
mB
=
mA
+
mB
½âµÃ£¬vB=
v0
ÓÉÌ⣬mA£¾mB£¬ÔòµÃµ½vB£¼0£¬ËµÃ÷µ¯»É»Ö¸´Ô³¤Ê±£¬BÎï¿éµÄËٶȲ»ÎªÁ㣬ÇÒ·½ÏòÏò×ó£®¹ÊA´íÎó£¬BÕýÈ·£®
C¡¢DÔÚµ¯»ÉѹËõ¹ý³ÌÖУ¬BÏÈÏòÓÒ¼õËÙ£¬ËٶȼõÖÁÁãÏò×ó¼ÓËÙ£¬ÔòBÎï¿éµÄ¶¯ÄÜÏȼõСºóÔö´ó£®¹ÊC´íÎó£¬DÕýÈ·£®
¹ÊÑ¡BD
mBv0=mAvA+mBvB£¬
| 1 |
| 2 |
| v | 20 |
| 1 |
| 2 |
| v | 2A |
| 1 |
| 2 |
| v | 2B |
½âµÃ£¬vB=
| mB-mA |
| mB+mA |
ÓÉÌ⣬mA£¾mB£¬ÔòµÃµ½vB£¼0£¬ËµÃ÷µ¯»É»Ö¸´Ô³¤Ê±£¬BÎï¿éµÄËٶȲ»ÎªÁ㣬ÇÒ·½ÏòÏò×ó£®¹ÊA´íÎó£¬BÕýÈ·£®
C¡¢DÔÚµ¯»ÉѹËõ¹ý³ÌÖУ¬BÏÈÏòÓÒ¼õËÙ£¬ËٶȼõÖÁÁãÏò×ó¼ÓËÙ£¬ÔòBÎï¿éµÄ¶¯ÄÜÏȼõСºóÔö´ó£®¹ÊC´íÎó£¬DÕýÈ·£®
¹ÊÑ¡BD
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿