ÌâÄ¿ÄÚÈÝ
13£®Èçͼ¼×£¬abcdÊÇλÓÚÊúÖ±Æ½ÃæÄÚµÄÕý·½ÐαպϽðÊôÏß¿ò£¬½ðÊôÏß¿òµÄÖÊÁ¿Îªm£¬Ïß¿òµç×èΪR£®ÔÚ½ðÊôÏß¿òµÄÏ·½ÓÐÒ»ÔÈÇ¿´Å³¡ÇøÓò£¬MNºÍPQÊÇÔÈÇ¿´Å³¡ÇøÓòµÄˮƽ±ß½ç£¬²¢ÓëÏß¿òµÄbc±ßƽÐУ¬´Å³¡·½Ïò´¹Ö±ÓÚÏß¿òÆ½ÃæÏòÀÏÖʹ½ðÊôÏß¿ò´ÓMNÉÏ·½Ä³Ò»¸ß¶È´¦Óɾ²Ö¹¿ªÊ¼ÏÂÂ䣬ͼÒÒÊǽðÊôÏß¿òÓÉ¿ªÊ¼ÏÂÂäµ½ÍêÈ«´©¹ýÔÈÇ¿´Å³¡ÇøÓò˲¼äµÄv-tͼÏó£¬Í¼ÖÐ×Öĸ¾ùΪÒÑÖªÁ¿£®ÖØÁ¦¼ÓËÙ¶ÈΪg£¬²»¼Æ¿ÕÆø×èÁ¦£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©| A£® | ½ðÊôÏß¿òµÄ±ß³¤Îªv1£¨t2-t1£© | |
| B£® | ½ðÊôÏß¿ò¸Õ½øÈë´Å³¡Ê±¸ÐÓ¦µçÁ÷·½ÏòÑØadcba·½Ïò | |
| C£® | ´Å³¡µÄ´Å¸ÐӦǿ¶ÈΪ$\frac{1}{{v}_{1}£¨{t}_{2}-{t}_{1}£©}$$\sqrt{\frac{mgR}{{v}_{1}}}$ | |
| D£® | ½ðÊôÏß¿òÔÚ0-t4µÄʱ¼äÄÚËù²úÉúµÄÈÈÁ¿Îªmgv1£¨t2-t1£©+$\frac{1}{2}$m£¨v${\;}_{3}^{2}$-v${\;}_{2}^{2}$£© |
·ÖÎö ½ðÊô¿ò½øÈë´Å³¡Ç°×öÔȼÓËÙÔ˶¯£¬ÓÉͼÏßÓëʱ¼äÖáËùΧµÄÃæ»ý¶Á³ö½ðÊô¿ò³õʼλÖõÄbc±ßµ½±ß½çMNµÄ¸ß¶È£»ÓÉͼÏó¿ÉÖª£¬½ðÊô¿ò½øÈë´Å³¡¹ý³ÌÖÐÊÇ×öÔÈËÙÖ±ÏßÔ˶¯£¬¸ù¾Ýʱ¼äºÍËÙ¶ÈÇó½â½ðÊô¿òµÄ±ß³¤£»ÓÉͼ֪£¬½ðÊôÏß¿ò½øÈë´Å³¡¹ý³Ì×öÔÈËÙÖ±ÏßÔ˶¯£¬ÖØÁ¦ºÍ°²ÅàÁ¦Æ½ºâ£¬ÁÐʽ¿ÉÇó³öB£®ÓÉÄÜÁ¿Êغ㶨ÂÉÇó³öÔÚ½øÈë´Å³¡¹ý³ÌÖнðÊô¿ò²úÉúµÄÈÈÁ¿£®
½â´ð ½â£ºA¡¢ÓÉͼÏó¿ÉÖª£¬½ðÊô¿ò½øÈë´Å³¡¹ý³ÌÖÐÊÇ×öÔÈËÙÖ±ÏßÔ˶¯£¬ËÙ¶ÈΪv1£¬Ô˶¯Ê±¼äΪt2-t1£¬¹Ê½ðÊô¿òµÄ±ß³¤£ºl=v1£¨t2-t1£©£»¹ÊAÕýÈ·£»
B¡¢½ðÊôÏß¿ò¸Õ½øÈë´Å³¡Ê±£¬¸ù¾ÝÀã´Î¶¨ÂÉÅжϿÉÖª£¬¸ÐÓ¦µçÁ÷·½ÏòÑØabcda·½Ïò£®¹ÊB´íÎó£»
C¡¢ÔÚ½ðÊô¿ò½øÈë´Å³¡µÄ¹ý³ÌÖУ¬½ðÊô¿òËùÊܰ²ÅàÁ¦µÈÓÚÖØÁ¦£¬ÔòµÃ£ºmg=BIl£¬I=$\frac{Bl{v}_{1}}{R}$£¬ÓÖ l=v1£¨t2-t1£©£®
ÁªÁ¢½âµÃ£ºB=$\frac{1}{{v}_{1}£¨{t}_{1}-{t}_{2}£©}\sqrt{\frac{mgR}{{v}_{1}}}$£»¹ÊCÕýÈ·£»
D¡¢t1µ½t2ʱ¼äÄÚ£¬¸ù¾ÝÄÜÁ¿Êغ㶨ÂÉ£¬²úÉúµÄÈÈÁ¿Îª£ºQ1=mgl=mg¦Ô1£¨t2-t1£©£»
t3µ½t4ʱ¼äÄÚ£¬¸ù¾ÝÄÜÁ¿Êغ㶨ÂÉ£¬²úÉúµÄÈÈÁ¿Îª£ºQ2=mgl+$\frac{1}{2}$m$£¨{v}_{3}^{2}-{v}_{2}^{2}£©$=mg¦Ô1£¨t2-t1£©+$\frac{1}{2}$m$£¨{v}_{3}^{2}-{v}_{2}^{2}£©$
¹ÊQ=Q1+Q2=2mg¦Ô1£¨t2-t1£©+$\frac{1}{2}$m$£¨{v}_{3}^{2}-{v}_{2}^{2}£©$£»¹ÊD´íÎó£®
¹ÊÑ¡£ºAC£®
µãÆÀ ±¾Ìâµç´Å¸ÐÓ¦ÓëÁ¦Ñ§ÖªÊ¶¼òµ¥µÄ×ۺϣ¬ÄÜÓÉͼÏó¶Á³öÏß¿òµÄÔ˶¯Çé¿ö£¬Ñ¡ÔñÓëÖ®ÏàÓ¦µÄÁ¦Ñ§¹æÂÉÊǽâ´ð±¾ÌâµÄ¹Ø¼ü£¬Òª¼ÓÇ¿Á·Ï°£¬ÅàÑø×Ô¼ºÊ¶±ð¡¢Àí½âͼÏóµÄÄÜÁ¦ºÍ·ÖÎö¡¢½â¾ö×ÛºÏÌâµÄÄÜÁ¦
| A£® | AµãµÄ³¡Ç¿Ò»¶¨´óÓÚBµãµÄ³¡Ç¿£¬³¡Ç¿·½ÏòÏò×ó | |
| B£® | Á£×ÓÔÚAµãµÄµçÊÆÄÜÒ»¶¨Ð¡ÓÚÔÚBµãµÄµçÊÆÄÜ | |
| C£® | vB¿ÉÄÜ´óÓÚvA | |
| D£® | AµãµÄµçÊÆÒ»¶¨µÍÓÚBµãµÄµçÊÆ |
| A£® | ´ÓÅ£¶ÙµÚÒ»¶¨ÂÉ¿ÉÑÝÒï³ö¡°ÖÊÁ¿ÊÇÎïÌå¹ßÐÔ´óСµÄÁ¿¶È¡±µÄ½áÂÛ | |
| B£® | ¿ªÆÕÀÕ¾¹ý¶àÄêµÄDZÐÄÑо¿£¬Ìá³öÁËÐÐÐÇÔ˶¯µÄÈý´ó¶¨ÂÉ£¬²¢½ÒʾÁËÐÐÐÇÔ˶¯¹æÂɵÄÁ¦Ñ§ÔÒò | |
| C£® | ¿âÂØ×îÔçÒýÈëµç³¡¸ÅÄî²¢Ìá³öÓõ糡Ïß±íʾµç³¡ | |
| D£® | kg•m/s2ÓëWb•A/mÄܱíʾͬһ¸öÎïÀíÁ¿µÄµ¥Î» |
| A£® | A¡¢CÁ½µãµçÊÆ²îµÈÓÚD¡¢BÁ½µãµçÊÆ²î | |
| B£® | Aµã³¡Ç¿Ð¡ÓÚBµã³¡Ç¿ | |
| C£® | Cµã³¡Ç¿ÓëDµã³¡Ç¿´óСÏàͬ£¬·½ÏòÒ²Ïàͬ | |
| D£® | ½«Ä³¸ºµçºÉ´ÓOµãÒÆµ½Dµã£¬µç³¡Á¦×öÕý¹¦ |
| A£® | aµãµÄµç³¡Ç¿¶È±ÈbµãµÄС | |
| B£® | bµãµÄµçÊÆ±ÈaµãµÄ¸ß | |
| C£® | ¼ìÑéµçºÉ-qÔÚaµãµÄµçÊÆÄܱÈÔÚbµãµÄ´ó | |
| D£® | ½«¼ìÑéµçºÉ-q´ÓaµãÒÆµ½bµãµÄ¹ý³ÌÖÐËüµÄµçÊÆÄÜÔö¼Ó |
| A£® | Á½ÎÀÐǹìµÀ°ë¾¶¾ùΪ$\root{3}{{{R^3}+{{£¨{\frac{RT}{2¦Ð}}£©}^2}g}}$ | |
| B£® | Á½ÎÀÐǹìµÀ°ë¾¶¾ùΪ$\root{3}{{{{£¨{\frac{RT}{2¦Ð}}£©}^2}g}}$ | |
| C£® | ÎÀÐÇ1ÓÉAÔ˶¯µ½BËùÐèµÄ×î¶Ìʱ¼äΪ$\frac{T}{3}$ | |
| D£® | Á½ÎÀÐǽÇËÙ¶È´óС¾ùΪ$\frac{2¦Ð}{T}$ |