ÌâÄ¿ÄÚÈÝ
19£®£¨1£©ÖÊ×ÓÉäÈë´Å³¡Ê±ËٶȵĴóС£»
£¨2£©ÖÊ×Óµ½´ïyÖáËùÐèµÄʱ¼ä£»
£¨3£©ÖÊ×Óµ½´ïyÖáµÄλÖÃ×ø±ê£®
·ÖÎö £¨1£©¸ù¾ÝÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄ°ë¾¶¹«Ê½Çó³öÖÊ×ÓµÄËÙ¶È´óС£®
£¨2£©¸ù¾ÝÖÊ×ÓµÄÔڴų¡ÖеÄÖÜÆÚ¹«Ê½Çó³öÔڴų¡ÖеÄÔ˶¯Ê±¼ä£¬½øÈëµç³¡ºó×öÀàÆ½Å×Ô˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½Çó³öÔڵ糡ÖеÄÔ˶¯Ê±¼ä£¬´Ó¶øµÃ³öµ½´ïyÖáËùÐèµÄʱ¼ä£®
£¨3£©¸ù¾Ý¼¸ºÎ¹ØÏµ£¬½áºÏÔ˶¯Ñ§¹«Ê½Çó³öÁ£×ÓÔÚyÖáÉϵÄ×Ý×ø±ê£®
½â´ð ½â£º£¨1£©ÖÊ×ÓÉäÈë´Å³¡ºó×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵã¬
$qvB=m\frac{{v}^{2}}{r}$£¬
½âµÃv=$\frac{qBr}{m}$£®
£¨2£©Óɼ¸ºÎ¹ØÏµÖª£¬ÖÊ×ÓÑØxÖáÕýÏòÉäÈë´Å³¡ºó¾$\frac{1}{4}$Ô²»¡ºóÒÔËÙ¶Èv´¹Ö±Óڵ糡·½Ïò½øÈëµç³¡£¬Ôڴų¡ÖÐÔ˶¯ÖÜÆÚT=$\frac{2¦Ðr}{v}$£¬
Ôڴų¡ÖÐÔ˶¯µÄʱ¼ä${t}_{1}=\frac{T}{4}=\frac{¦Ðm}{2qB}$£¬
½øÈëµç³¡ºóÖÊ×Ó×öÀàÆ½Å×Ô˶¯£¬Ñص糡·½ÏòÔ˶¯rºóµ½´ïyÖᣬ![]()
r=$\frac{1}{2}a{{t}_{2}}^{2}$£¬
qE=ma£¬
½âµÃ${t}_{2}=\sqrt{\frac{2r}{a}}=\sqrt{\frac{2mr}{qE}}$£®
ËùÇóʱ¼ät=t1+t2=$\frac{¦Ðm}{2qB}+\sqrt{\frac{2mr}{qE}}$£®
£¨3£©ÖÊ×ÓÔڴų¡ÖÐת¶¯90¡ã½Çºó´ÓPµã´¹Ö±Óڵ糡Ïß½øÈëµç³¡£®
Óɼ¸ºÎ¹ØÏµÖª£¬Pµã¾àyÖáµÄ¾àÀëx1=r£¬
Pµã¾àxÖáµÄ¾àÀëy1=r£¬
ÖÊ×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬${x}_{1}=\frac{1}{2}\frac{qE}{m}{{t}_{2}}^{2}$£¬
y1=vt2£¬
½âµÃ${y}_{1}=Br\sqrt{\frac{2qr}{mE}}$£®
ÖÊ×Óµ½´ïyÖáµÄλÖÃ×ø±êΪ£¨0£¬$r+Br\sqrt{\frac{2qr}{mE}}$£©£®
´ð£º£¨1£©ÖÊ×ÓÉäÈë´Å³¡Ê±ËٶȵĴóСΪ$\frac{qBr}{m}$£»
£¨2£©ÖÊ×Óµ½´ïyÖáËùÐèµÄʱ¼äΪ$\frac{¦Ðm}{2qB}+\sqrt{\frac{2mr}{qE}}$£®£»
£¨3£©ÖÊ×Óµ½´ïyÖáµÄλÖÃ×ø±êΪ£¨0£¬$r+Br\sqrt{\frac{2qr}{mE}}$£©£®
µãÆÀ ±¾Ì⿼²éÁË´øµçÁ£×ÓÔڴų¡ºÍµç³¡ÖеÄÔ˶¯£¬¹Ø¼ü×÷³ö¹ì¼£Í¼£¬½áºÏ°ë¾¶¹«Ê½¡¢ÖÜÆÚ¹«Ê½ÒÔ¼°Å£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½×ÛºÏÇó½â£®
| A£® | Á¦FµÄˮƽ·ÖÁ¦ÎªFcos¦Á | |
| B£® | Á¦FµÄÊúÖ±·ÖÁ¦ÎªFsin¦Á£¬ËüʹÎïÌå¶Ô×ÀÃæµÄѹÁ¦±ÈmgС | |
| C£® | Á¦FµÄÊúÖ±·ÖÁ¦ÎªFsin¦Á£¬Ëü²»Ó°ÏìÎïÌå¶Ô×ÀÃæµÄѹÁ¦ | |
| D£® | Á¦FÓëľ¿éÖØÁ¦mgµÄºÏÁ¦·½Ïò¿ÉÒÔÊúÖ±ÏòÉÏ |
| A£® | °ÂË¹ÌØ·¢ÏÖÁ˵ç´Å¸ÐÓ¦ | |
| B£® | ·¨ÀµÚ·¢ÏÖÁ˵çÁ÷µÄ´ÅЧӦ | |
| C£® | Àã´Î·¢ÏÖµÄÀã´Î¶¨ÂÉ×ñÑÄÜÁ¿Êغ㶨ÂÉ | |
| D£® | ÂåÂ××È·¢ÏÖÁ˴ų¡¶ÔÔ˶¯µçºÉµÄ×÷ÓùæÂÉ |
| A£® | ¼ÓËÙÉÏÉý | B£® | ¼õËÙÉÏÉý | C£® | ¼ÓËÙϽµ | D£® | ¼õËÙϽµ |
| A£® | ÖØÁ¦ÊÆÄܼõС£¬¶¯Äܲ»±ä£¬»úеÄܼõС | |
| B£® | ÖØÁ¦ÊÆÄܼõС£¬¶¯ÄÜÔö¼Ó£¬»úеÄܼõС | |
| C£® | ÖØÁ¦ÊÆÄܼõС£¬¶¯ÄÜÔö¼Ó£¬»úеÄÜÔö¼Ó | |
| D£® | ÖØÁ¦ÊÆÄܼõС£¬¶¯ÄÜÔö¼Ó£¬»úеÄܲ»±ä |