题目内容
如图所示,光滑斜面底端B平滑连接着半径为r=0.40m的竖直光滑圆轨道.质量为m=0.50kg的小物块,从距地面h=1.8m高处沿斜面由静止开始下滑,(取g=10m/s2)求:
①物块滑到斜面底端B时的速度大小
②物块运动到圆轨道的最高点A时,受到圆轨道的压力大小.
①物块滑到斜面底端B时的速度大小
②物块运动到圆轨道的最高点A时,受到圆轨道的压力大小.
①物块由静止滑到点B的过程由动能定理:W合=△EK
所以:mgh=
m
;
解得:vB=
=
m/s=6m/s
②物块由静止滑到A 点的过程,由机械能守恒:mgh=
m
+mg?2r
所以:vA=
代入数据,解得:vA=
m/s
物块在A点由牛顿第二定律:FN+mg=m
所以代入数据解得:FN=20N
答:①物块滑到斜面底端B时的速度大小6m/s;
②物块运动到圆轨道的最高点A时,受到圆轨道的压力大小20N.
所以:mgh=
| 1 |
| 2 |
| v | 2B |
解得:vB=
| 2gh |
| 20×1.8 |
②物块由静止滑到A 点的过程,由机械能守恒:mgh=
| 1 |
| 2 |
| v | 2A |
所以:vA=
| 2gh-4gr |
代入数据,解得:vA=
| 20 |
物块在A点由牛顿第二定律:FN+mg=m
| ||
| r |
所以代入数据解得:FN=20N
答:①物块滑到斜面底端B时的速度大小6m/s;
②物块运动到圆轨道的最高点A时,受到圆轨道的压力大小20N.
练习册系列答案
相关题目