ÌâÄ¿ÄÚÈÝ
11£®| A£® | Ïß¿òÖÐµÄµç¶¯ÊÆËæÊ±¼ä¾ùÔÈÔö´ó | B£® | ͨ¹ýÏß¿ò½ØÃæµÄµçºÉÁ¿Îª$\frac{{B{l^2}}}{2R}$ | ||
| C£® | Ïß¿òËùÊÜÍâÁ¦µÄ×î´óֵΪ$\frac{{\sqrt{2}{B^2}{l^2}v}}{R}$ | D£® | Ïß¿òÖеÄÈȹ¦ÂÊÓëʱ¼ä³ÉÕý±È |
·ÖÎö Ïß¿ò½øÈë´Å³¡µÄ¹ý³ÌÖУ¬ÓÐЧÇиîµÄ³¤¶È¾ùÔÈÔö´ó£¬ÓÉE=BLv·ÖÎö¸ÐÓ¦µç¶¯ÊƵı仯Çé¿ö£»¸ù¾Ý¸ÐÓ¦µçºÉÁ¿¹«Ê½q=n$\frac{¡÷¦µ}{R}$ÇóµçºÉÁ¿£»µ±AB¸ÕÒª½øÈë´Å³¡Çиî´Å¸ÐÏßʱ²úÉúµÄ¸ÐÓ¦µçÁ÷×î´ó£¬°²ÅàÁ¦×î´ó£¬ÓÉF=BILÇó°²ÅàÁ¦µÄ×î´óÖµ£¬ÓÉÆ½ºâÌõ¼þÇó½âÍâÁ¦µÄ×î´óÖµ£®Ïß¿òÖеÄÈȹ¦ÂÊÓɹ«Ê½P=I2R·ÖÎö£®
½â´ð ½â£ºA¡¢Ïß¿ò½øÈë´Å³¡µÄtʱ¼äʱ£¬Ïß¿òÇиî´Å¸ÐÏßµÄÓÐЧ³¤¶ÈΪvt£¬¸ÐÓ¦µç¶¯ÊÆÎª E=BLvt=Bv2t£¬¿ÉÖª E¡Øt£¬¼´µç¶¯ÊÆËæÊ±¼ä¾ùÔÈÔö´ó£¬¹ÊAÕýÈ·£»
B¡¢Í¨¹ýÏß¿ò½ØÃæµÄµçºÉÁ¿ q=I¡÷t=$\frac{E}{R}$•¡÷t
ÓÖ¸ù¾Ý·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂɵãºE=$\frac{¡÷¦µ}{¡÷t}$£¬
ÁªÁ¢µÃ£ºq=$\frac{¡÷¦µ}{R}$=$\frac{BS}{R}$=$\frac{{B{l^2}}}{2R}$£¬¹ÊBÕýÈ·£®
C¡¢µ±AB¸ÕÒªÇиî´Å¸ÐÏßʱµçÁ÷×î´ó£¬°²ÅàÁ¦×î´ó£¬F°²=BIl=B$\frac{Blv}{R}$l=$\frac{{B}^{2}{l}^{2}v}{R}$£¬¸ù¾ÝƽºâÌõ¼þµÃÖª£¬ÍâÁ¦ F=F°²=$\frac{{B}^{2}{l}^{2}v}{R}$£¬¹ÊC´íÎó£»
D¡¢ÓÉÉÏ¿ÉÖª£¬¸ÐÓ¦µçÁ÷IÓëʱ¼ä³ÉÕý±È£¬ÓÉP=I2R£¬¿ÉÖªÈȹ¦ÂÊÓëʱ¼ä³É¶þ´Î¹ØÏµ£¬¹ÊD´íÎó£®
¹ÊÑ¡£ºAB
µãÆÀ ±¾Ì⿼²éÁË·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂɺͱպϻØÂ·Å·Ä·¶¨ÂɵÄÓ¦Óã¬ÊÇÒ»µÀ³£¹æÌ⣬ҪעÒâÌâÖе¼Ïß¿òµÄÓÐЧÇи¶ÈµÄ±ä»¯£¬È»ºó½áºÏÁ¦Ñ§¡¢Èȹ¦ÂʵÈ֪ʶÇó½â£®
| A£® | F1=F2=30N | B£® | F1=12N£¬F2=3N | C£® | F1=F2=6N | D£® | F1=F2=10N |
| A£® | ´Å³¡Êǿ͹۴æÔÚµÄÒ»ÖÖÎïÖÊ£¬ÊÇÓɴŸÐÏß×é³ÉµÄ | |
| B£® | ´Å¸ÐÏßÊÇÓÉϸÌúм×é³ÉµÄ | |
| C£® | ´Å³¡¶Ô·ÅÈëÆäÖеĴż«ÓÐÁ¦µÄ×÷Óà | |
| D£® | ´Å¸ÐÏßÉÏÿһµãµÄÇÐÏß·½Ïò¼´ÊÇ·ÅÔÚ´Ë´¦µçÁ÷ÔªµÄÊÜÁ¦·½Ïò |
| A£® | b¡¢cµÄÏßËÙ¶È´óСÏàµÈ£¬ÇÒ´óÓÚaµÄÏßËÙ¶È | |
| B£® | b¡¢cµÄÏòÐļÓËÙ¶È´óСÏàµÈ£¬ÇÒ´óÓÚaµÄÏòÐļÓËÙ¶È | |
| C£® | aµÄ¶¯ÄÜÒ»¶¨×î´ó£¬b¡¢cµÄÊÆÄÜÏàµÈ | |
| D£® | aÎÀÐÇÓÉÓÚijÔÒò£¬¹ìµÀ°ë¾¶»ºÂý¼õС£¬ÆäÖÜÆÚ½«±äС |
| A£® | ·½ÏòÏò×ó | B£® | ·½ÏòÏòÓÒ | C£® | ´óСÊÇ1A | D£® | ´óСÊÇ0.1A |
| A£® | µÂ²¼ÂÞÒâÌá³ö£ºÔ˶¯µÄʵÎïÁ£×ÓÒ²¾ßÓв¨¶¯ÐÔ£¬Æä¶¯Á¿P¡¢²¨³¤¦ËÂú×ã¦Ë=$\frac{h}{p}$ | |
| B£® | Ò»ÖØÔ×ÓºËË¥±ä³É¦ÁÁ£×ÓºÍÁíÒ»Ô×Ӻˣ¬Ë¥±ä²úÎïµÄ½áºÏÄÜÖ®ºÍÒ»¶¨´óÓÚÔÀ´Öغ˵ĽáºÏÄÜ | |
| C£® | ²£¶ûµÄ¶¨Ì¬ºÍԾǨÀíÂÛ£¬ºÜºÃµØ½âÊÍÁËËùÓÐÔ×Ó¹âÆ×µÄ¹æÂÉ | |
| D£® | ΪÁ˽âÊͺÚÌå·øÉ乿ÂÉ£¬°®Òò˹̹Ìá³öÁ˵ç´Å·øÉäµÄÄÜÁ¿Á¿×Ó»¯¼ÙÉè |
| A£® | Á¦ | B£® | ǧ¿Ë | C£® | ÀåÃ× | D£® | ³¤¶È |