ÌâÄ¿ÄÚÈÝ
5£®¢Ù»îÈû¸ÕÒªÀ뿪¿¨»·´¦Ê±·â±ÕÆøÌåµÄζȣ»
¢Ú·â±ÕÆøÌåζÈϽµµ½t3=27¡æÊ±»îÈûÓëÆø¸×µ×²¿Ö®¼äµÄ¾àÀ룮
·ÖÎö ¢Ù»îÈû¸ÕÒªÀ뿪¿¨»·´¦Ç°ÆøÌå×öµÈÈݱ仯£¬¸ù¾Ý²éÀí¶¨ÂÉÁÐʽÇó½â£»
¢Ú»îÈûÀ뿪¿¨»·ºó×öµÈѹ±ä»¯£¬¸ù¾Ý¸ÇÂÀÈø¿Ë¶¨ÂÉÁÐʽÇó½â£®
½â´ð ½â£º¢Ù»îÈû¸ÕÒªÀ뿪¿¨»·´¦Ö®Ç°
³õ̬£ºP1=1.5atm T1=267+273K=540K
ĩ̬£ºP2=P0=1atm
´Ë¹ý³ÌµÈÈݱ仯£¬ÓɲéÀí¶¨Âɵãº$\frac{{P}_{1}}{{T}_{1}}=\frac{{P}_{2}}{{T}_{2}}$
´úÈëÊý¾Ý½âµÃ£º${T}_{2}=\frac{{P}_{2}{T}_{1}}{{P}_{1}}=\frac{1¡Á540}{1.5}K=360K$
¼´t2=T2-273=£¨360-273£©¡æ=87¡æ
¢Ú»îÈûÀ뿪¿¨»·ºó×öµÈѹ±ä»¯£¬
¸ù¾Ý¸ÇÂÀÈø¿Ë¶¨Âɵãº$\frac{{L}_{2}S}{{T}_{2}}=\frac{{L}_{3}S}{{T}_{3}}$
½âµÃ£º${L}_{3}=\frac{{T}_{3}}{{T}_{2}}{L}_{2}=\frac{300}{360}¡Á54cm=45cm$
´ð£º¢Ù»îÈû¸ÕÒªÀ뿪¿¨»·´¦Ê±·â±ÕÆøÌåµÄζÈΪ87¡æ£»
¢Ú·â±ÕÆøÌåζÈϽµµ½t3=27¡æÊ±»îÈûÓëÆø¸×µ×²¿Ö®¼äµÄ¾àÀëΪ45cm£®
µãÆÀ ±¾Ì⿼²ìÆøÌåʵÑ鶨ÂÉ£¬¹Ø¼üÊǸù¾ÝÌâÒâ·ÖÎö³ö±ä»¯¹ý³ÌÖÐÆøÌå×öºÎÖֱ仯£¬È»ºóÑ¡ÔñºÏÊÊµÄÆøÌåʵÑ鶨ÂÉÁÐʽÇó½â¼´¿É£®
| A£® | 1£º2 | B£® | 1£º$\sqrt{3}$ | C£® | 1£º3 | D£® | 1£º$\sqrt{2}$ |
| A£® | ÏòÉÏ»¬¶¯P | B£® | ±ÕºÏ¿ª¹ØS | ||
| C£® | ³é³öÏßȦÖеÄÌúо | D£® | Ôö´ó½»Á÷µçÔ´µÄƵÂÊ |
| A£® | $\sqrt{\frac{n}{k}}$T | B£® | $\sqrt{\frac{{n}^{2}}{k}}$T | C£® | $\sqrt{\frac{{n}^{3}}{{k}^{2}}}$T | D£® | $\sqrt{\frac{{n}^{3}}{k}}$T |
| A£® | ¾ü¶ÓÊ¿±ø¹ýÇÅʱʹÓñ㲽£¬ÊÇΪÁË·ÀÖ¹ÇÅ·¢Éú¹²ÕñÏÖÏó | |
| B£® | »úе²¨ºÍµç´Å²¨ÔÚ½éÖÊÖеĴ«²¥ËٶȽöÓɽéÖʾö¶¨ | |
| C£® | ²´ËÉÁÁ°ßÊǹâͨ¹ýÔ²¿×·¢ÉúÑÜÉäʱÐÎ³ÉµÄ | |
| D£® | ÅÄÉã²£Á§³÷´°ÄÚµÄÎïÆ·Ê±£¬ÔÚ¾µÍ·Ç°¼Ó×°Ò»¸öÆ«ÕñƬÒÔ¼õÈõ²£Á§µÄ·´Éä¹â |