ÌâÄ¿ÄÚÈÝ
16£®| A£® | O¡¢B¼äµÄ¾àÀëΪ$\sqrt{\frac{kQq}{¦Ìmg}}$ | |
| B£® | ´ÓAµ½BµÄ¹ý³ÌÖУ¬µç³¡Á¦¶ÔµãµçºÉÒÒ×öµÄ¹¦W=¦ÌmgL0+$\frac{1}{2}$mv02-$\frac{1}{2}$mv2 | |
| C£® | ÔÚµãµçºÉ¼×Ðγɵĵ糡ÖУ¬A¡¢B¼äµÄµçÊÆ²îUAB=$\frac{¦Ìmg{L}_{0}+\frac{1}{2}m{{v}_{0}}^{2}-\frac{1}{2}m{v}^{2}}{q}$ | |
| D£® | ÈôÔÚA¡¢OÖ®¼ä¼ÓÒ»ÊúÖ±·½ÏòÉϵÄÔÈÇ¿µç³¡£¬ÔòÒÒÇò¿ÉÄÜÑØAO·½Ïò×öÔÈËÙÖ±ÏßÔ˶¯ |
·ÖÎö ±¾ÌâÊ×ÏÈÒªÕýÈ··ÖÎöÎïÌåÊÜÁ¦Ìص㣬Ã÷È·Á¦ºÍÔ˶¯µÄ¹ØÏµ£¬ÔÚ±¾ÌâÖÐ×¢Ò⻬¶¯Ä¦²ÁÁ¦µÄ´óС·½Ïò²»±ä£¬Á½Çò¿¿½ü¹ý³ÌÖпâÂØÁ¦Öð½¥Ôö´ó£¬Ð¡ÇòÏȼõËÙºó¼ÓËÙ£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɺ͹¦ÄܹØÏµ¿ÉÕýÈ·½â´ð£»
¸ù¾ÝUAB=$\frac{{W}_{AB}}{q}$¿É¼ÆËãµçÊÆ²î£»
ÒÒÇòÑØAO·½Ïò×öÔÈËÙÖ±ÏßÔ˶¯µÄÌõ¼þÊǺÏÁ¦Îª0£¬¶ÔÒÒÇòÊÜÁ¦·ÖÎö¿ÉÅжϣ®
½â´ð ½â£ºA¡¢ÓÉÌâÒ⣬ÒÒµ½´ïBµãʱËÙ¶È×îС£¬ÒÒÏȼõËÙÔ˶¯ºó×ö¼ÓËÙÔ˶¯£¬µ±ËÙ¶È×îСʱÓУºmg¦Ì=F¿â=k$\frac{qQ}{{r}^{2}}$£¬½âµÃOB¼äµÄ¾àÀër=$\sqrt{\frac{kQq}{¦Ìmg}}$£¬¹ÊAÕýÈ·£»
B¡¢´ÓAµ½BµÄ¹ý³ÌÖУ¬¸ù¾Ý¶¯Äܶ¨ÀíµÃ£ºW-¦ÌmgL0=$\frac{1}{2}$mv2-$\frac{1}{2}$m${v}_{0}^{2}$£¬µÃW=¦ÌmgL0+$\frac{1}{2}$mv2-$\frac{1}{2}$m${v}_{0}^{2}$£¬¹ÊB´íÎó£»
C¡¢µãµçºÉ¼×Ðγɵĵ糡ÖУ¬A¡¢B¼äµÄµçÊÆ²îΪ£ºUAB=$\frac{{W}_{AB}}{-q}$=$\frac{\frac{1}{2}m{v}_{0}^{2}-¦Ìmg{L}_{0}-\frac{1}{2}m{v}^{2}}{q}$£¬¹ÊC´íÎó£»
D¡¢ÈôÔÚA¡¢OÖ®¼ä¼ÓÒ»ÊúÖ±·½ÏòÉϵÄÔÈÇ¿µç³¡£¬ÔòÒÒÇòÊܼ׵ÄÏò×ó¾²µçÒýÁ¦£¬ÓÉ¿âÂØ¶¨ÂÉ¿ÉÖª£¬´óС±ä»¯£¬»¹ÒªÊܵ½ÔÈÇ¿µç³¡µÄÏòϵĵ糡Á¦£¬Ôö´óÕýѹÁ¦£¬Ä¦²ÁÁ¦Ôö´óµ«ºã¶¨²»±ä£¬ËùÒÔ¼×¶ÔÒҵľ²µçÒýÁ¦ºÍĦ²ÁÁ¦µÄºÏÁ¦²»Îª0£¬²»¿ÉÄÜÑØAO·½Ïò×öÔÈËÙÖ±ÏßÔ˶¯£¬¹ÊD´íÎó£®
¹ÊÑ¡£ºA£®
µãÆÀ ±¾ÌâÔÚ½èÖú¿âÂØÁ¦µÄ»ù´¡ÖªÊ¶£¬¿¼²éÁËÁ¦ÓëÔ˶¯¡¢Å£¶ÙµÚ¶þ¶¨ÂÉ¡¢¶¯Äܶ¨ÀíµÈ»ù´¡ÖªÊ¶µÄ×ÛºÏÓ¦Óã¬ÊÇ¿¼²éѧÉú×ÛºÏÄÜÁ¦µÄºÃÌ⣮
¸ù¾ÝUAB=$\frac{{W}_{AB}}{q}$¼ÆËãµçÊÆ²îʱ£¬¿É½«¹¦ºÍµçÁ¿µÄÕý¸º´úÈë¼ÆË㣮
| A£® | n2±¶ | B£® | n±¶ | C£® | $\frac{1}{{n}^{2}}$±¶ | D£® | $\frac{1}{n}$±¶ |
| A£® | $\frac{N}{M}$ | B£® | $\frac{m}{{N}_{A}}$ | C£® | $\frac{M}{N}$ | D£® | $\frac{M}{¦ÑN}$ |
| A£® | ÔÚt=0ʱ£¬ÖʵãMÏòxÖḺ·½ÏòÕñ¶¯ | |
| B£® | ÔÚt=0ʱ£¬ÖʵãMµÄ¼ÓËÙ¶ÈÕýÔÚ¼õС | |
| C£® | ÔÚt=0.2sʱ£¬ÖʵãMµÄËÙ¶È·½ÏòÓë¼ÓËÙ¶È·½ÏòÏàͬ | |
| D£® | ÔÚt=0.05sʱ£¬ÖʵãM»Øµ½Æ½ºâλÖà | |
| E£® | ¾¹ý0.2s£¬ÖʵãMͨ¹ýµÄ·³ÌÒ»¶¨Îª4cm |
| A£® | µçÈÝÆ÷µÄµçÈݱäС | B£® | Á½°å¼äµç³¡Ç¿¶È±ä´ó | ||
| C£® | Á½°å¼äµç³¡Ç¿¶È²»±ä | D£® | PµãµçÊÆÉý¸ß |