ÌâÄ¿ÄÚÈÝ
ÎÒ¹ú·¢ÉäµÄ¡°æÏ¶ðÒ»ºÅ¡±ÎÀÐǾ¹ý¶à´Î¼ÓËÙ¡¢±ä¹ìºó£¬×îÖճɹ¦½øÈë»·Ô¹¤×÷¹ìµÀ£®ÈçͼËùʾ£¬ÎÀÐǼȿÉÒÔÔÚÀëÔÂÇò±È½Ï½üµÄÔ²¹ìµÀaÉÏÔ˶¯£¬Ò²¿ÉÒÔÔÚÀëÔÂÇò±È½ÏÔ¶µÄÔ²¹ìµÀbÉÏÔ˶¯£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©

| A£®ÎÀÐÇÔÚaÉÏÔËÐеÄÏßËÙ¶ÈСÓÚÔÚbÉÏÔËÐеÄÏßËÙ¶È |
| B£®ÎÀÐÇÔÚaÉÏÔËÐеÄÖÜÆÚ´óÓÚÔÚbÉÏÔËÐеÄÖÜÆÚ |
| C£®ÎÀÐÇÔÚaÉÏÔËÐеĽÇËÙ¶ÈСÓÚÔÚbÉÏÔËÐеĽÇËÙ¶È |
| D£®ÎÀÐÇÔÚaÉÏÔËÐÐʱÊܵ½µÄÍòÓÐÒýÁ¦´óÓÚÔÚbÉÏÔËÐÐʱµÄÍòÓÐÒýÁ¦ |
¶ÔÓÚÔÂÇòµÄÎÀÐÇ£¬ÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬ÉèÎÀÐǵÄÖÊÁ¿Îªm¡¢¹ìµÀ°ë¾¶Îªr¡¢ÔÂÇòÖÊÁ¿ÎªM£¬ÓÐ
F=FÏò
F=
FÏò=m
=m¦Ø2r=m
½âµÃ
v=
¦Ø=
T=2¦Ð
¸ù¾ÝÌâÒâµÃ£ºÎÀÐÇÔÚaÉÏÔËÐеĹìµÀ°ë¾¶Ð¡ÓÚÔÚbÉÏÔËÐеĹìµÀ°ë¾¶£¬
ËùÒÔÎÀÐÇÔÚaÉÏÔËÐеÄÏßËٶȴ󣬽ÇËÙ¶È´ó¡¢ÖÜÆÚС¡¢ÍòÓÐÒýÁ¦´ó£®¹ÊA¡¢B¡¢C´íÎó£¬DÕýÈ·£®
¹ÊÑ¡D£®
F=FÏò
F=
| GMm |
| r2 |
FÏò=m
| v2 |
| r |
| 4¦Ð2r |
| T2 |
½âµÃ
v=
|
¦Ø=
|
T=2¦Ð
|
¸ù¾ÝÌâÒâµÃ£ºÎÀÐÇÔÚaÉÏÔËÐеĹìµÀ°ë¾¶Ð¡ÓÚÔÚbÉÏÔËÐеĹìµÀ°ë¾¶£¬
ËùÒÔÎÀÐÇÔÚaÉÏÔËÐеÄÏßËٶȴ󣬽ÇËÙ¶È´ó¡¢ÖÜÆÚС¡¢ÍòÓÐÒýÁ¦´ó£®¹ÊA¡¢B¡¢C´íÎó£¬DÕýÈ·£®
¹ÊÑ¡D£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿