题目内容

一根张紧的水平弹性绳上有a,b两点,相距s=14m,.b点在a点的右方,当一列简谐横波沿此长绳向右传播时,a点达到正向最大位移时,b点的位移恰好为零,而且向上运动.经过t=1s后,a点的位移为零,且向上运动,而b的位移恰好到达负向最大位移处,求:
(1)这列简谐横波的波速.
(2)当2λ<s<3λ,3T<t<4T时,这列波的波速是多少?
(3)画出2λ<s<3λ,3T<t<4T时,1s末的波形图.

【答案】分析:根据波的周期性,通过波动和振动的关系,得出波长和周期的通项表达式,结合v=求出波的波速,当2λ<s<3λ,3T<t<4T时,根据波速的表达式得出波速的大小.
解答:解:(1)依题意得,s=,t=
解得,T=.(m=0,1,2…,n=0,1,2…)
则波速.(m=0,1,2…,n=0,1,2…)
(2)当2λ<s<3λ,3T<t<4T时,则n=2,m=3.
代入v=,解得v=
(3)2λ<s<3λ,3T<t<4T时,a、b之间有2个波长,经过1s后,a点的位移为零,且向上运动,而b的位移恰好到达负向最大位移处,波形图如图所示.
答:(1)这列简谐横波的波速为(m=0,1,2…,n=0,1,2…)
(2)这列波的波速是m/s
(3)1s末的波形图如图所示.
点评:解决本题的关键知道波动与振动的关系,以及知道波传播的周期性,即经过周期的整数倍,波形不变.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网