题目内容
12.分析 由题,小球恰在斜面上做匀速圆周运动,重力沿斜面向下的分力与电场力平衡或重力与电场力平衡,由洛伦兹力提供向心力,根据牛顿第二定律和圆周运动公式求出周期.当重力沿斜面向下的分力与电场力平衡时,场强最小.
解答 解:小球恰在斜面上做匀速圆周运动,由洛伦兹力提供向心力,根据牛顿第二定律得
qvB=m$\frac{{v}^{2}}{r}$
得到,r=$\frac{mv}{qB}$,周期T=$\frac{2πr}{v}$=$\frac{2πm}{qB}$=$\frac{2π}{ω}$
得到,B=$\frac{mω}{q}$
当重力沿斜面向下的分力与电场力平衡时,电场力最小,场强最小,则有
Eminq=mgsinθ
得到,Emin=$\frac{mgsinθ}{q}$,电场力方向向上;而粒子带负电;故电场线方向沿斜面向下
故答案为:$\frac{mω}{q}$,$\frac{mgsinθ}{q}$,沿斜面向下.
点评 本题小球在复合场中做匀速圆周运动,除洛伦兹力外,其他力的合力为零,仅由洛伦兹力提供向心力.解答此类问题,正确的受力分析是关键.
练习册系列答案
相关题目
2.如图为一条电场线,关于AB两点场强大小,下列说法正确的是( )

| A. | EA一定大于EB | |
| B. | 因电场线是直线,所以是匀强电场,故EA=EB | |
| C. | EA一定小于EB | |
| D. | 只有一条电场线,无法从疏密程度确定AB两点的场强大小 |
3.
蹦极是一项既惊险又刺激的运动,深受年轻人的喜爱.如图所示,蹦极者从P点静止跳下,到达A处时弹性绳刚好伸直,继续下降到最低点B处,B离水面还有数米距离.蹦极者在其下降的整个过程中,重力势能的减少量为△E1、绳的弹性势能增加量为△E2、克服空气阻力做功为W,则下列说法正确的是( )
| A. | 蹦极者从P到A的运动过程中,机械能守恒 | |
| B. | 蹦极者与绳组成的系统从A到B的过程中,机械能守恒 | |
| C. | △E1=W+△E2 | |
| D. | △E1+△E2=W |
20.如图所示是某导体的伏安特性曲线,由图可知( )

| A. | 导体的电阻是25Ω | |
| B. | 导体的电阻是0.04Ω | |
| C. | 当导体两端的电压是1V时,通过导体的电流是0.4A | |
| D. | 当通过导体的电流是0.1A时,导体两端的电压是2.5V |
7.
如图甲所示的电路中,L是一个自感系数相当大的线圈,其直流电阻阻值与电阻R不等,A、B是两个完全相同的发光二极管,发光二极管具有单向导电的特性,即如图乙所示正向接通时发光,反向接通时不发光.下列说法正确的是( )
| A. | 接通稳定后B亮,A不亮 | B. | 接通瞬间A先亮B后亮 | ||
| C. | 断开瞬间AB一样亮后熄灭 | D. | 断开后A先灭,B滞后熄灭 |
4.
在动摩擦因数μ=0.2的水平面上有一个质量为m=1kg的小球,小球的一端与水平轻弹簧连接,另一端与不可伸长的轻绳相连,轻绳与竖直方向成θ=45°角,如图所示.小球处于静止状态,且水平面对小球的弹力恰好为零,取g=10m/s2( )
| A. | 此时弹簧的弹力为10$\sqrt{2}$N | |
| B. | 剪断弹簧的瞬间,小球加速度的大小为10$\sqrt{2}$m/s2 | |
| C. | 剪断细绳的瞬间,小球加速度的大小为8m/s2 | |
| D. | 剪断细绳的瞬间,小球受到的合力斜向左45° |
1.
如图所示,为跳伞者在下降过程中速度随时间变化的示意图.下列对跳伞者在不同时间段的运动情况描述正确的是( )
| A. | 0-t1做匀速直线运动 | B. | t1-t2做加速度增大的加速运动 | ||
| C. | t2-t3做加速度减小的减速运动 | D. | t3-t4处于静止状态 |