ÌâÄ¿ÄÚÈÝ

18£®ÈçͼËùʾΪ»ØÐý¼ÓËÙÆ÷µÄʾÒâͼ£®ËüÓÉÁ½¸öÂÁÖÆDÐͽðÊô±âºÐ×é³É£¬Á½¸öDÐκÐÕýÖм俪ÓÐÒ»ÌõÏÁ·ì£»Á½¸öDÐͺд¦ÔÚÔÈÇ¿´Å³¡Öв¢½ÓÔÚ¸ßÆµ½»±äµçÔ´ÉÏ£®ÔÚD1ºÐÖÐÐÄA´¦ÓÐÀë×ÓÔ´£¬Ëü²úÉú²¢·¢³öµÄÕýÀë×Ó£¬¾­ÏÁ·ìµçѹ¼ÓËٺ󣬽øÈëD2ºÐÖУ®Ôڴų¡Á¦µÄ×÷ÓÃÏÂÔ˶¯°ë¸öÔ²Öܺ󣬴¹Ö±Í¨¹ýÏÁ·ì£¬ÔÙ¾­ÏÁ·ìµçѹ¼ÓËÙ£»Îª±£Ö¤Á£×Óÿ´Î¾­¹ýÏÁ·ì¶¼±»¼ÓËÙ£¬É跨ʹ½»±äµçѹµÄÖÜÆÚÓëÁ£×ÓÔÚÏÁ·ì¼°´Å³¡ÖÐÔ˶¯µÄÖÜÆÚÒ»Ö£®Èç´ËÖܶø¸´Ê¼£¬ËÙ¶ÈÔ½À´Ô½´ó£¬Ô˶¯°ë¾¶Ò²Ô½À´Ô½´ó£¬×îºóµ½´ïDÐͺеıßÔµ£¬ÒÔ×î´óËٶȱ»µ¼³ö£®ÒÑÖªÕýÀë×ÓÊǦÁÁ£×Ó£¬ÆäµçºÉÁ¿Îªq£¬ÖÊÁ¿Îªm£¬¼ÓËÙʱµç¼«¼äµçѹ´óСºãΪU£¬´Å³¡µÄ´Å¸ÐӦǿ¶ÈΪB£¬DÐͺеİ뾶ΪR£¬ÉèÏÁ·ìºÜÕ­£¬Á£×Óͨ¹ýÏÁ·ìµÄʱ¼ä¿ÉÒÔºöÂÔ²»¼Æ£®ÉèÕýÀë×Ó´ÓÀë×ÓÔ´·¢³öʱµÄ³õËÙ¶ÈΪÁ㣮£¨²»¼ÆÁ£×ÓÖØÁ¦£©Çó£º
£¨1£©¦ÁÁ£×ÓÔÚµÚn´Î¼ÓËÙºó»ñµÃËÙÂÊ£®
£¨2£©¦ÁÁ£×ÓÔÚµÚn´Î¼ÓËÙºóÓëµÚn+1´Î¼ÓËÙºóλÖÃÖ®¼äµÄ¾àÀë¡÷x£®
£¨3£©ÈôʹÓô˻ØÐý¼ÓËÙÆ÷¼ÓËÙ뮺ˣ¬ÒªÏëʹ뮺˻ñµÃÓë¦ÁÁ£×ÓÏàͬµÄ¶¯ÄÜ£¬ÇëÄãͨ¹ý·ÖÎö£¬Ìá³öÒ»¸ö¼òµ¥¿ÉÐеİ취£®

·ÖÎö £¨1£©¸ù¾ÝnqU=$\frac{1}{2}m{v}_{n}^{2}$£¬¼´¿ÉÇó½â¼ÓËÙºó»ñµÃËÙÂÊ£®
£¨2£©»ØÐý¼ÓËÙÆ÷ÊÇÀûÓõ糡¼ÓËٺʹų¡Æ«×ªÀ´¼ÓËÙÁ£×Ó£¬¸ù¾Ý¶¯Äܶ¨ÀíÇó³ön´Î¼ÓËÙºóµÄËÙ¶È£¬Çó³ö¹ìµÀ°ë¾¶£¬×¥×¡¹æÂÉ£¬Çó³ö¡÷x£®
£¨3£©»ØÐý¼ÓËÙÆ÷¼ÓËÙÁ£×Óʱ£¬Á£×ÓÔڴų¡ÖÐÔ˶¯µÄÖÜÆÚºÍ½»Á÷µç±ä»¯µÄÖÜÆÚÏàͬ£®ÒÑ֪뮺ËÓë¦ÁÁ£×ÓµÄÖÊÁ¿±ÈºÍµçºÉ±È£¬¸ù¾Ý×î´ó¶¯ÄÜÏàµÈ£¬µÃ³ö´Å¸ÐӦǿ¶ÈµÄ¹ØÏµ£¬ÒÔ¼°¸ù¾ÝÖÜÆÚ¹«Ê½£¬µÃ³ö½»Á÷µçµÄÖÜÆÚ±ä»¯£®

½â´ð ½â£º£¨1£©¦ÁÁ£×ÓÔڵ糡Öб»¼ÓËÙ£¬¸ù¾Ý¶¯Äܶ¨Àí£¬Éè´ËʱµÄËÙ¶ÈΪvn£¬
ÔòÓУºnqU=$\frac{1}{2}m{v}_{n}^{2}$£¬
½âµÃ£ºvn=$\sqrt{\frac{2nqU}{m}}$
£¨2£©¦ÁÁ£×Ó¾­µç³¡µÚ1´Î¼ÓËÙºó£¬ÒÔËÙ¶Èv1½øÈëD2ºÐ£¬Éè¹ìµÀ°ë¾¶Îªr1
Ôò  r1=$\frac{m{v}^{2}}{qB}$=$\frac{1}{B}\sqrt{\frac{2mU}{q}}$
¦ÁÁ£×Ó¾­µÚ2´Îµç³¡¼ÓËÙºó£¬ÒÔËÙ¶Èv2½øÈëD1ºÐ£¬Éè¹ìµÀ°ë¾¶Îªr2
Ôò r2=$\frac{m{v}^{2}}{qB}$=$\frac{1}{B}\sqrt{\frac{2¡Á2mU}{q}}$
¦ÁÁ£×ÓÒѾ­¹ýn´Îµç³¡¼ÓËÙ£¬ÒÔËÙ¶Èvn½øÈëD2ºÐ£¬Óɶ¯Äܶ¨Àí£º
  nUq=$\frac{1}{2}$m${v}_{n}^{2}$
¹ìµÀ°ë¾¶ rn=$\frac{m{v}_{n}}{qB}$=$\frac{1}{B}\sqrt{\frac{2nmU}{q}}$
¦ÁÁ£×ÓÒѾ­¹ýn+1´Îµç³¡¼ÓËÙ£¬ÒÔËÙ¶Èvn+1½øÈëD1ºÐ£¬Óɶ¯Äܶ¨Àí£º
  £¨n+1£©Uq=$\frac{1}{2}$m${v}_{n+1}^{2}$
¹ìµÀ°ë¾¶£ºrn+1=$\frac{m{v}_{n+1}}{qB}$=$\frac{1}{B}\sqrt{\frac{£¨n+1£©•2mU}{q}}$
Ôò¡÷x=2£¨rn+1-rn£©£¨ÈçͼËùʾ£©
½âµÃ£¬¡÷x=2£¨$\frac{1}{B}\sqrt{\frac{£¨n+1£©•2mU}{q}}$-$\frac{1}{B}\sqrt{\frac{2nmU}{q}}$£©=$\frac{2}{B}$$\sqrt{\frac{2Um}{q}}$£¨$\sqrt{n+1}$-$\sqrt{n}$£©
£¨3£©¼ÓËÙÆ÷¼ÓËÙ´øµçÁ£×ÓµÄÄÜÁ¿ÎªEk=$\frac{1}{2}$mv2=$\frac{{q}^{2}{B}^{2}{R}^{2}}{2m}$£¬
ÓɦÁÁ£×Ó»»³É뮺ˣ¬ÓÐ$\frac{{q}^{2}{B}^{2}{R}^{2}}{2m}$=$\frac{£¨\frac{q}{2}£©^{2}{B}_{1}^{2}{R}^{2}}{2£¨\frac{m}{2}£©}$£¬ÔòB1=$\sqrt{2}$B£¬¼´´Å¸ÐӦǿ¶ÈÐèÔö´óΪԭÀ´µÄ$\sqrt{2}$ ±¶£»
¸ßƵ½»Á÷µçÔ´µÄÖÜÆÚT=$\frac{2¦Ðm}{qB}$£¬ÓɦÁÁ£×Ó»»Îªë®ºËʱ£¬½»Á÷µçÔ´µÄÖÜÆÚӦΪԭÀ´µÄ$\frac{\sqrt{2}}{2}$±¶£®
 ´ð£º£¨1£©¦ÁÁ£×ÓÔÚµÚn´Î¼ÓËÙºó»ñµÃËÙÂÊ$\sqrt{\frac{2nqU}{m}}$£®
£¨2£©¦ÁÁ£×ÓÔÚµÚn´Î¼ÓËÙºóÓëµÚn+1´Î¼ÓËÙºóλÖÃÖ®¼äµÄ¾àÀë$\frac{2}{B}$$\sqrt{\frac{2Um}{q}}$£¨$\sqrt{n+1}$-$\sqrt{n}$£©£®
£¨3£©ÈôʹÓô˻ØÐý¼ÓËÙÆ÷¼ÓËÙ뮺ˣ¬ÒªÏëʹ뮺˻ñµÃÓë¦ÁÁ£×ÓÏàͬµÄ¶¯ÄÜ£¬Ôò´Å¸ÐӦǿ¶ÈÐèÔö´óΪԭÀ´µÄ$\sqrt{2}$ ±¶£¬»òÕß½»Á÷µçÔ´µÄÖÜÆÚӦΪԭÀ´µÄ$\frac{\sqrt{2}}{2}$±¶£®

µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÖªµÀ»ØÐý¼ÓËÙÆ÷ÀûÓôų¡Æ«×ªºÍµç³¡¼ÓËÙʵÏÖ¼ÓËÙÁ£×Ó£¬Á£×ÓÔڴų¡ÖÐÔ˶¯µÄÖÜÆÚºÍ½»Á÷µçµÄÖÜÆÚÏàµÈ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø