题目内容
1.小明同学在离地面为h高的阳台,如图所示,在长为L的细绳上下两端各栓一个小球,手提细绳上端,放手后两小球由静止下落,不计空气阻力,小球着地后均不反弹,重力加速度均为g,求:(1)B球落地时的速度大小vB;
(2)A球下落的时间tA;
(3)两小球落地的时间差△t.
分析 (1)根据自由落体运动的速度位移关系求解;
(2)根据自由落体运动的位移时间关系求解;
(3)求出两球落地点时间,然后求两小球落地的时间差.
解答 解:(1)B球做自由落体运动,则vB2=2gh
解得${v}_{B}=\sqrt{2gh}$;
(2)由于h+L=$\frac{1}{2}g{{t}_{A}}^{2}$,
解得:tA=$\sqrt{\frac{2(h+L)}{g}}$;
(3)设B球下落的时间为tB,则$h=\frac{1}{2}g{t}_{B}^{2}$
而△t=tA-tB,
则$△t=\sqrt{\frac{2(h+L)}{g}}-\sqrt{\frac{2h}{g}}$.
答:(1)B球落地时的速度大小为$\sqrt{2gh}$;
(2)A球下落的时间为$\sqrt{\frac{2(h+L)}{g}}$;
(3)两小球落地的时间差为$\sqrt{\frac{2(h+L)}{g}}-\sqrt{\frac{2h}{g}}$.
点评 本题主要是考查了自由落体运动,解答本题要知道自由落体运动是初速度为零、加速度为g的匀加速直线运动,满足匀变速直线运动的计算公式.
练习册系列答案
相关题目
16.
如图所示,在水平向右的匀强电场中,在O点固定一电量为Q的正点电荷,a、b、c、d为以O为圆心的同一圆周上的四点,bd连线与匀强电场平行,ac连线与匀强电场垂直.则( )
| A. | a、c两点的场强相同 | |
| B. | b点的场强大于a点的场强 | |
| C. | da间的电势差大于ab间的电势差 | |
| D. | 检验电荷在a点的电势能等于在c点的电势能 |
6.如图甲所示,一绝缘的竖直圆环上均匀分布着正电荷,一光滑细杆从圆心垂直圆环平面穿过圆环,杆上套有带正电的小球,现使小球从a点由静止释放,并开始计时,后经过b、c两点,其运动过程中的v-t图象如图乙所示.则( )

| A. | a点场强大于b点场强 | |
| B. | 带电圆环在圆心处产生的场强为零 | |
| C. | 电势差Uab小于Ubc | |
| D. | 小球由b到c的过程中平均速度小于0.4m/s |
13.有一电池,外电路断开时的路端电压为3.0V,外电路接上阻值为14.0Ω的负载电阻后路端电压降为2.8V,则可以确定电池的电动势E和内电阻r为( )
| A. | E=2.8V,r=1.0Ω | B. | E=2.8V,r=2.0Ω | C. | E=3.0V,r=2.0Ω | D. | E=3.0V,r=1.0Ω |
16.
如图所示,正方形abcd区域内(含边界)有垂直于纸面向里的匀强磁场,O点是cd边的中点,一个带正电的粒子(重力忽略不计)若从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0刚好从c点射出磁场.现设法使该带电粒子从O点沿纸面以与Od成45°的方向(如图中虚线所示),以各种不同的速率射入正方形内,那么下列说法中正确的是( )
| A. | 该带电粒子不可能刚好从正方形的某个顶点射出磁场 | |
| B. | 若该带电粒子从ab边射出磁场,它在磁场中经历的时间可能是t0 | |
| C. | 若该带电粒子从bc边射出磁场,它在磁场中经历的时间可能是t0 | |
| D. | 若该带电粒子从cd边射出磁场,它在磁场中经历的时间一定是$\frac{3}{2}$t0 |