ÌâÄ¿ÄÚÈÝ

6£®Ä³ÊµÑéС×éÏë²âÁ¿Ò»µçÔ´µÄµç¶¯ÊƺÍÄÚµç×裬ÔÚʵÑéÊÒÕÒµ½ÁËÈçÏÂÆ÷²Ä£º
´ý²âµçÔ´                 
Ò»¶Î´Öϸ¾ùÔÈ×Ü×èֵΪRoµÄ½ðÊôË¿
²»¼ÆÄÚ×èµÄµçÁ÷±í         
×èֵΪR1µÄµç×è
¿Ì¶È³ß                   
¿ª¹ØÒ»¸ö¡¢µ¼ÏßÈô¸É
ËûÃǵIJ¿·Ö²Ù×÷²½ÖèÈçÏ£º

£¨1£©²âµÃ½ðÊôË¿×ܳ¤¶ÈΪL0£»
£¨2£©È»ºóÓÃͼ¼×ËùʾµÄµç·ͼ½øÐвâÁ¿£¬Í¼ÖÐRx±íʾ½ðÊôË¿£®Çë¸ù¾Ýµç·ͼÔÚͼÒÒÖÐÍê³ÉʵÎïÁ¬Ïߣ»
£¨3£©²»¶Ï¸Ä±äµç×èË¿½ÓÈëµç·µÄ³¤¶È£¬¼Ç¼µÃ¶à×éµçÁ÷±íʾÊý£¬ºÍ¶ÔÓ¦µÄ½ðÊôË¿³¤¶ÈL£®¸ù¾ÝËùµÃÊý¾Ý×ö³öÁË$\frac{1}{I}$-LͼÏóÈçͼ±ûËùʾ£¬Í¼ÖÐ×ø±êÖµa¡¢b¡¢L1¾ùΪÒÑÖª£¬ÔòµçÔ´µÄµç¶¯ÊÆE=$\frac{{R}_{0}{L}_{1}}{£¨b-a£©{L}_{0}}$£»µçÔ´µÄÄÚµç×èr=$\frac{a{R}_{0}{L}_{1}}{£¨b-a£©{L}_{0}}$-R1£®£¨ÓÃͼÖÐ×ø±êÖµºÍÏà¹ØÎïÀíÁ¿±íʾ£©

·ÖÎö £¨2£©¸ù¾ÝÔ­Àíͼ¿ÉÖª¿ÉµÃ³öʵÎïͼ£»
£¨3£©¸ù¾Ýµç×趨ÂÉ¿ÉÃ÷È·½ÓÈëµç×èµÄ³¤¶È£¬ÔÙ¸ù¾Ý±ÕºÏµç·ŷķ¶¨ÂÉ¿ÉÃ÷È·¶ÔÓ¦µÄ±í´ïʽ£¬ÓÉͼÏó¿ÉÇóµÃµç¶¯ÊƺÍÄÚµç×裮

½â´ð ½â£º£¨2£©¸ù¾ÝÔ­Àíͼ¿ÉµÃ³ö¶ÔÓ¦µÄʵÎïͼÈçͼËùʾ£»
£¨3£©Éè½ÓÈëµ¼Ïß³¤¶ÈΪL£¬Ôò¿ÉÖª½ÓÈëµç×èΪ£ºRx=$\frac{L}{{L}_{0}}{R}_{0}$
ÔòÓɱպϵç·ŷķ¶¨ÂÉ¿ÉÖª£ºI=$\frac{E}{{R}_{x}+{R}_{1}+r}$
±äÐοɵãº$\frac{1}{I}$=$\frac{{R}_{1}+r}{E}$+$\frac{{R}_{0}}{E{L}_{0}}L$
¸ù¾ÝͼÏó¹æÂÉ¿ÉÖª£º
$\frac{{R}_{1}+r}{E}$=a
$\frac{{R}_{0}}{E{L}_{0}}=\frac{b-a}{{L}_{1}}$
ÁªÁ¢½âµÃ£ºE=$\frac{{R}_{0}{L}_{1}}{£¨b-a£©{L}_{0}}$£»r=$\frac{a{R}_{0}{L}_{1}}{£¨b-a£©{L}_{0}}$-R1
¹Ê´ð°¸Îª£º£¨2£©ÈçͼËùʾ£»£¨3£©$\frac{{R}_{0}{L}_{1}}{£¨b-a£©{L}_{0}}$£¬$\frac{a{R}_{0}{L}_{1}}{£¨b-a£©{L}_{0}}$-R1

µãÆÀ ±¾Ì⿼²éÁ˲âÁ¿µç¶¯ÊƺÍÄÚµç×èµÄʵÑ飬עÒâÓ¦Óñպϵç·ŷķ¶¨ÂÉÓëµç×趨ÂÉÇó³öͼÏóµÄº¯Êý±í´ïʽÊÇÕýÈ·½âÌâµÄǰÌáÓë¹Ø¼ü£¬ÒªÕÆÎÕÓ¦ÓÃͼÏó·¨´¦ÀíʵÑéÊý¾ÝµÄ·½·¨

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø