ÌâÄ¿ÄÚÈÝ
20£®£¨1£©MDµÄ¾àÀëL£»
£¨2£©Á£×Ó´ÓMµãÔ˶¯µ½OµãËùÓõÄʱ¼ä£®
·ÖÎö £¨1£©Óɼ¸ºÎ֪ʶÇó³öÁ£×Ó¹ìµÀ°ë¾¶£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¾àÀëL£»
£¨2£©Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬Ôڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬ÓÉÔ²ÖÜÔ˶¯µÄÖÜÆÚ¹«Ê½ÓëÀàÆ½Å×Ô˶¯ÖªÊ¶Çó³öÁ£×ÓµÄÔ˶¯Ê±¼ä£»
½â´ð
½â£º£¨1£©Á£×ÓÔ˶¯¹ì¼£ÈçͼËùʾ£¬ÉèÁ£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯µÄ°ë¾¶ÎªR£®
ÔòÓÐ$qvB=m\frac{{v}^{2}}{R}$£¬
Óɼ¸ºÎ¹ØÏµµÃL=2Rsin¦È£¬
ÇÒ$v=\frac{E}{B}$£®
½âµÃL=$\frac{\sqrt{3}mE}{{B}^{2}q}$£®
£¨2£©ÉèÁ£×ÓÔÚÔÈÇ¿´Å³¡ÖÐÔ˶¯µÄÖÜÆÚΪT£¬Ôڴų¡Ô˶¯µÄʱ¼äΪt1£¬ÔòÓÐT=$\frac{2¦Ðm}{qB}$£¬
Á£×ÓÔڴų¡ÖÐת¹ýµÄ½Ç¶ÈΪ2¦È=120¡ã£¬ÔòÔڴų¡ÖÐÔ˶¯µÄʱ¼äΪ${t}_{1}=\frac{1}{3}T=\frac{2¦Ðm}{3qB}$£®
Óɼ¸ºÎ¹ØÏµÖªÁ£×Ó½øÈëµç³¡Ê±ËÙ¶È·½ÏòÓëµç³¡·½Ïò´¹Ö±£¬ËùÒÔÁ£×Ó×öÀàÆ½Å×Ô˶¯£¬ÉèÁ£×ÓÔڵ糡ÖÐÔ˶¯µÄʱ¼äΪt2£¬ÔòÓÐ
ˮƽ·½Ïòx=vt2£¬ÊúÖ±·½Ïòy=$\frac{1}{2}•\frac{qE}{m}{{t}_{2}}^{2}$£¬
ÓÖy=xtan¦È
½âµÃ${t}_{2}=\frac{2\sqrt{3}m}{qB}$£®
¼´Á£×Ó´ÓMµ½OµÄʱ¼äΪ$t={t}_{1}+{t}_{2}=£¨\frac{2¦Ð}{3}+2\sqrt{3}£©\frac{m}{qB}$£®
´ð£º£¨1£©MDµÄ¾àÀëLΪ$\frac{\sqrt{3}mE}{{B}^{2}q}$£»
£¨2£©Á£×Ó´ÓMµãÔ˶¯µ½OµãËùÓõÄʱ¼äΪ$£¨\frac{2¦Ð}{3}+2\sqrt{3}£©\frac{m}{qB}$£®
µãÆÀ ×öºÃ´ËÀàÌâÄ¿µÄ¹Ø¼üÊÇ׼ȷµÄ»³öÁ£×ÓÔ˶¯µÄ¹ì¼£Í¼£¬ÀûÓü¸ºÎ֪ʶÇó³öÁ£×ÓÔ˶¯µÄ°ë¾¶£¬ÔÙ½áºÏ°ë¾¶¹«Ê½ºÍÖÜÆÚ¹«Ê½È¥·ÖÎö£®
| A£® | »úе²¨µÄ´«²¥·½Ïò¾ÍÊǽéÖÊÖÐÖʵãµÄÕñ¶¯·½Ïò | |
| B£® | »úе²¨µÄ´«²¥°éËæ×ÅÕñ¶¯ÄÜÁ¿µÄ´«µÝ | |
| C£® | »úе²¨´«²¥µÄÊÇÕñ¶¯ÕâÖÖÔ˶¯ÐÎʽ£¬Öʵ㲢²»Ëæ²¨Ç¨ÒÆ | |
| D£® | ²¨²»µ«ÄÜ´«µÝÄÜÁ¿£¬Ò²ÄÜ´«µÝÐÅÏ¢ |
| A£® | ÈôСÇòµ½´ï×î¸ßµãµÄÏßËÙ¶ÈΪv£¬Ð¡ÇòÔÚ×î¸ßµãʱµÄ¹ØÏµÊ½mg+qvB=m$\frac{{v}^{2}}{R}$³ÉÁ¢ | |
| B£® | СÇò»¬ÏµijõλÖÃÀë¹ìµÀ×îµÍµã¸ßΪh=$\frac{21}{20}$m | |
| C£® | СÇòÔÚ×î¸ßµãÖ»Êܵ½ÂåÂ××ÈÁ¦ºÍÖØÁ¦µÄ×÷Óà | |
| D£® | СÇò´Ó³õʼλÖõ½×î¸ßµãµÄ¹ý³ÌÖлúеÄÜÊØºã |
| A£® | ÎïÌåµÄ¼ÓËٶȲ»¶ÏÔö´ó | B£® | ÎïÌåµÄ¼ÓËٶȲ»¶Ï¼õС | ||
| C£® | ÎïÌåµÄ¼ÓËٶȱ£³Ö²»±ä | D£® | ÒÔÉÏ˵·¨¶¼´íÎó |