题目内容
(10分)如图所示,光滑水平面AB与竖直面内的半圆形导轨在B点相接,导轨半径为R.一个质量为m的物体将弹簧压缩至A点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,脱离弹簧后当它经过B点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动完成半个圆周运动恰好到达C点。试求:
![]()
(1)弹簧开始时的弹性势能;
(2)物体从B点运动至C点克服阻力做的功;
(3)物体离开C点后落回水平面时的速度大小和方向。
【答案】
(1)3mgR (2)W=0.5mgR.(3)
【解析】(1)物块在B点时,
由牛顿第二定律得:FN-mg=m
,FN=7mg
EkB=
mvB2=3mgR
……………………3分
在物体从A点至B点的过程中,根据机械能守恒定律,弹簧的弹性势能Ep=EkB=3mgR.
(2)物体到达C点仅受重力mg,根据牛顿第二定律有
mg=m
,EkC=
mvC2=
mgR
物体从B点到C点只有重力和阻力做功,根据动能定理有:W阻-mg·2R=EkC-EkB
解得W阻=-0.5mgR
所以物体从B点运动至C点克服阻力做的功为W=0.5mgR. ………………3分
(3)物体离开轨道后做平抛运动,
水平方向有:![]()
坚直方向有:![]()
落地时的速度大小:![]()
与水平方向成
角斜向下:
……………………4分
本题考查圆周运动,在B点由支持力和重力的关系求得B点速度大小,由A到B弹性是能转化为动能即可求得弹性势能大小,在C点刚好通过,只有重力提供向心力,可计算C点速度大小,由B到C根据动能定理可计算克服阻力做功,从C点飞出后根据类平抛运动规律求解
练习册系列答案
相关题目