ÌâÄ¿ÄÚÈÝ
·ÖÎö£ºÓÒÇò×öÔȼÓËÙÖ±ÏßÔ˶¯£¬¸ù¾Ýx=
a
Çó½âʱ¼ä£»×óÇòÏÈ×ÔÓÉÂäÌ壬¸ù¾Ýh=
g
Çóʱ¼ä£¬È»ºóÇó³ö×î´óËÙ¶È£¬ÔÙÇó½âˮƽÔÈËÙÔ˶¯µÄʱ¼ä£®
| 1 |
| 2 |
| t | 2 2 |
| 1 |
| 2 |
| t | 2 |
½â´ð£º½â£ºÉèÐ±Ãæ³¤Îªx£¬ÓÒÇò×öÔȼÓËÙÖ±ÏßÔ˶¯£¬¸ù¾Ýx=
a
µÃµ½t2=
=
=
£»
×óÇò×ÔÓÉÂäÌåÔ˶¯ÊÀ¼ät=
=
=
£¬×î´óËÙ¶ÈΪv=
=
=
£¬ÔÈËÙʱ¼äΪt¡ä=
=
=0.4
£»¹Ê×Üʱ¼äΪ£ºt1=t+t¡ä=
+0.4
=
£»
¹Êt1=t2£»
¹ÊÑ¡B£®
| 1 |
| 2 |
| t | 2 2 |
|
|
|
×óÇò×ÔÓÉÂäÌåÔ˶¯ÊÀ¼ät=
|
|
|
| 2gh |
| 2gxsin37¡ã |
| 12x |
| 0.8x |
| v |
| 0.8x | ||
|
|
|
|
|
¹Êt1=t2£»
¹ÊÑ¡B£®
µãÆÀ£º±¾Ìâ¹Ø¼üÃ÷È·Á½¸öСÇòµÄÔ˶¯¹æÂÉ£¬È»ºó¸ù¾ÝÔ˶¯Ñ§¹«Ê½ÁÐʽÇó½â³öÁ½¸öСÇòµÄÔ˶¯Ê±¼ä±í´ïʽ½øÐбȽϣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
| A¡¢t1£¼t2 | B¡¢t1=t2 | C¡¢t1£¾t2 | D¡¢Ìõ¼þ²»¹»ÎÞ·¨È·¶¨ |