ÌâÄ¿ÄÚÈÝ
10£®| A£® | $\frac{5¦Ðm}{2qt}$ | B£® | $\frac{3¦Ðm}{qt}$ | C£® | $\frac{3¦Ðvmcos¦È}{qL}$ | D£® | $\frac{5¦Ðvmsin¦È}{2qL}$ |
·ÖÎö ÓÉÓÚËÙ¶È·½ÏòÓë´Å¸ÐӦǿ¶ÈµÄ·½Ïò³ÉÒ»¸ö¦È£¬ËùÒÔ´øµçÁ£×ÓÔÚˮƽ´Å³¡ÖÐÑØ´Å³¡·½Ïò×öÔÈËÙÖ±ÏßÔ˶¯£¬ÔÚ´¹Ö±Óڴų¡·½ÏòÉÏ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÔòÆäÔ˶¯¹ì¼£ÊÇÒ»¸öÏ󵯻ÉÒ»ÑùµÄÂÝÐýÇúÏߣ®ÓÉ·ÖÔ˶¯µÄ¶ÀÁ¢ÐԺ͵ÈʱÐÔ¾ÍÄÜÇó³ö´Å¸ÐӦǿ¶È´óС£®
½â´ð ½â£º´øµçÁ£×ÓÓë´Å¸ÐӦǿ¶È·½Ïò³ÉÒ»¶¨½Ç¶È½øÈë´Å³¡£¬ËüµÄÔ˶¯ÊÇÑØ´Å³¡·½ÏòµÄÔÈËÙÖ±ÏßÔ˶¯Óë´¹Ö±Óڴų¡·½ÏòµÄÔÈËÙÔ²ÖÜÔ˶¯µÄºÏÔ˶¯£¬ÓɵÈʱÐÔÓУº$£¨2n+1£©\frac{{T}_{Ô²}}{2}=t=\frac{L}{vcos¦È}$£¬¶ø${T}_{Ô²}=\frac{2¦Ðm}{Bq}$£¬ÁªÁ¢Á½Ê½µÃ£º$B=\frac{£¨2n+1£©¦Ðm}{qt}$ »òÕß$B=\frac{£¨2n+1£©¦Ðvmcos¦È}{qL}$ ÏÔÈ»µ±n=1ʱ£¬$B=\frac{3¦Ðm}{qt}$ »òÕß$B=\frac{3¦Ðvmcos¦È}{qL}$£¬ËùÒÔÑ¡ÏîAD´íÎó£¬Ñ¡ÏîBCÕýÈ·£®
¹ÊÑ¡£ºBC
µãÆÀ ±¾ÌâµÄ¹Ø¼üµãÊÇ´øµçÁ£×ÓËÙ¶È·½ÏòÓë´Å³¡·½Ïò²»´¹Ö±¶øÊdzÉÒ»¶¨¼Ð½Ç£¬ËùÒÔ´øµçÁ£×ÓµÄÔ˶¯ÊÇÔÈËÙÖ±ÏßÔ˶¯ºÍÔÈËÙÔ²ÖÜÔ˶¯Á½ÖÖÔ˶¯µÄºÏÔ˶¯£¬¸ù¾ÝÔ˶¯µÄ¶ÀÁ¢ÐԺ͵ÈʱÐÔ£¬ÒÔ¼°Á£×Ó×öÔÈËÙÔ²ÖÜÔ˶¯µÄÖÜÆÚ¹«Ê½£¨ÓëÁ£×Ó±¾ÉíºÍ´Å³¡Óйأ©£¬ÁªÁ¢¾ÍÄÜÇóµÃ´Å¸ÐӦǿ¶È´óС£¬µ±È»Òª¿¼ÂǶà½âÇé¿ö£®
| A£® | ÔÚ¹âµÄË«·ì¸ÉÉæÊµÑéÖУ¬Èô½ö½«ÈëÉä¹âÓɺì¹â¸ÄΪÂ̹⣬Ôò¸ÉÉæÌõÎÆ¼ä¾à±ä¿í | |
| B£® | µØÇòÉϽÓÊÕµ½À´×ÔÒ£Ô¶ÐÇÇòµÄ¹â²¨µÄ²¨³¤±ä³¤£¬¿ÉÒÔÅжϸÃÐÇÇòÕýÔÚÔ¶ÀëµØÇò | |
| C£® | ÅÄÉã²£Á§³÷´°ÄÚµÄÎïÌåʱ£¬ÔÚ¾µÍ·Ç°¿ÉÒÔ¼Ó×°Ò»¸öÆ«ÕñƬÒÔ¼õÈõ·´Éä¹âµÄÇ¿¶È | |
| D£® | Õæ¿ÕÖеĹâËÙÔÚ²»Í¬µÄ¹ßÐÔϵÖв»Ïàͬ |
| A£® | µ¯»ÉaÓ뵯»ÉbµÄѹËõÁ¿Ö®±ÈÊÇcot¦È | |
| B£® | µ¯»ÉaÓ뵯»ÉbµÄѹËõÁ¿Ö®±ÈÊÇ2tan¦È | |
| C£® | µ±µ¯»ÉѹËõµ½×î¶ÌµÄʱºò£¬Ð¨¿é¢ÙµÄËÙ¶ÈÒ»¶¨ÎªÁã | |
| D£® | µ±µ¯»ÉѹËõµ½×î¶ÌµÄʱºò£¬µæ°å¢ÛµÄËٶȲ»Ò»¶¨ÎªÁã |
| A£® | ´Ëʱµ¯»ÉµÄµ¯Á¦´óСΪm1gsin¦È | |
| B£® | ÀÁ¦FÔڸùý³ÌÖжÔľ¿éAËù×öµÄ¹¦ÎªF£¨m1+m2£©$\frac{gsin¦È}{k}$ | |
| C£® | µ¯»ÉÔڸùý³ÌÖе¯ÐÔÊÆÄÜÔö¼ÓÁËF£¨m1+m2£©$\frac{gsin¦È}{k}$-$\frac{1}{2}$mv2 | |
| D£® | ľ¿éAÔڸùý³ÌÖÐÖØÁ¦ÊÆÄÜÔö¼ÓÁË$\frac{{m}_{2}£¨{m}_{1}+{m}_{2}£©{g}^{2}£¨sin¦È£©^{2}}{k}$ |
| A£® | 18cm | B£® | 14cm | C£® | 15cm | D£® | 20cm |
| A£® | µ²°å¶ÔСÇòµÄµ¯Á¦ÏÈÔö´óºó¼õС | B£® | µ²°å¶ÔСÇòµÄµ¯Á¦ÏȼõСºóÔö´ó | ||
| C£® | Ð±Ãæ¶ÔÇòµÄÖ§³ÖÁ¦Öð½¥¼õС | D£® | Ð±Ãæ¶ÔÇòµÄÖ§³ÖÁ¦Öð½¥Ôö´ó |