题目内容

11.如图甲所示,将质量为m的小球以速度v0竖直向上抛出,小球上升的最大高度为h.若将质量分别为2m、3m、4m、5m的小球,分别以同样大小的速度v0从半径均为R=$\frac{1}{2}$h的竖直圆形光滑轨道的最低点水平向右射入轨道,轨道形状如图乙、丙、丁、戊所示.则质量分别为2m、3m、4m、5m的小球中,能到达的最大高度仍为h的是(小球大小和空气阻力均不计)(  )
A.质量为2m的小球B.质量为3m的小球C.质量为4m的小球D.质量为5m的小球

分析 根据机械能守恒定律,结合曲线运动最高点速度不为零,而直线运动最高点速度却为零,从而即可求解.

解答 解:甲图将质量为m的小球以速度v0竖直向上抛出,小球上升的最大高度为h,此时速度为零;
乙图将质量为2m的小球以速度v0滑上曲面,小球若能到达最大高度为h,则此时速度不为零,根据动能与重力势能之和,大于初位置的动能与重力势能,因此不可能;
丙图将质量为3m的小球以速度v0滑上曲面,小球若从最高点抛出,做斜抛运动,则此时速度不为零,根据机械能守恒可知,不可能达到h高度;
丁图将质量为4m的小球以速度v0滑上曲面,小球若能到达最大高度为h,则此时速度为零,根据机械能守恒定律可知,满足条件;
戊图将质量为5m的小球以速度v0滑上曲面,小球若从最高点抛出,做斜抛运动,则此时速度不为零,根据机械能守恒可知,不可能达到h高度;
故选:C.

点评 考查机械能守恒定律的应用,掌握曲线运动时,最高点的速度不为零,而直线运动最高点速度为零,是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网