ÌâÄ¿ÄÚÈÝ
7£®ÓÃÈçͼËùʾµÄʵÑé×°ÖÃ̽¾¿¼ÓËÙ¶ÈÓëÁ¦¡¢ÖÊÁ¿µÄ¹ØÏµ£¨½»Á÷µçƵÂÊΪ50Hz£©£º£¨Ò»£©Í¼ËùʾÊÇijͬѧͨ¹ýʵÑéµÃµ½µÄÒ»ÌõÖ½´ø£¬ËûÔÚÖ½´øÉÏÈ¡A¡¢B¡¢C¡¢D¡¢E¡¢F¡¢GµÈ7¸ö¼ÆÊýµã£¨Ã¿ÏàÁÚÁ½¸ö¼ÆÊýµãÖ®¼ä»¹ÓÐ4¸öµãûÓл³ö£©£¬½«ºÁÃ׿̶ȳ߷ÅÔÚÖ½´øÉÏ£®
¸ù¾ÝÏÂͼ¿ÉÖª£¬´òÏÂEµãʱС³µµÄËÙ¶ÈΪ0.20m/s£®Ð¡³µµÄ¼ÓËÙ¶ÈΪ0.40m/s2£®£¨¼ÆËã½á¹û¾ù±£ÁôÁ½Î»ÓÐЧÊý×Ö£©
£¨¶þ£©ÁíһͬѧÔÚ¸ÃʵÑéÖеõ½ÈçÏÂÒ»×éʵÑéÊý¾Ý£¨±íÖÐF±íʾϸÏß¶ÔС³µµÄÀÁ¦£¬a±íʾС³µµÄ¼ÓËÙ¶È£©£º
| R=UI | 0.196 | 0.294 | 0.392 | 0.490 | 0.588 |
| a/m•s-2 | 0.25 | 0.58 | 0.90 | 1.20 | 1.53 |
£¨2£©¸ù¾Ýͼ±í·ÖÎö£¬ÊµÑé²Ù×÷ÖдæÔÚµÄÎÊÌâ¿ÉÄÜÊÇAB£¨Ìî×ÖĸÐòºÅ£©
A£®Ã»ÓÐÆ½ºâĦ²ÁÁ¦
B£®Æ½ºâĦ²ÁÁ¦Ê±Ä¾°åÇã½Ç¹ýС
C£®Æ½ºâĦ²ÁÁ¦Ê±Ä¾°åÇã½Ç¹ý´ó
D£®Ð¡³µÖÊÁ¿Ì«´ó
E£®¹³ÂëµÄÖÊÁ¿Ì«´ó£®
·ÖÎö £¨Ò»£©¸ù¾Ýij¶Îʱ¼äÄ򵀮½¾ùËٶȵÈÓÚÖмäʱ¿ÌµÄ˲ʱËÙ¶ÈÇó³öEµãµÄ˲ʱËÙ¶È£¬¸ù¾ÝÁ¬ÐøÏàµÈʱ¼äÄÚµÄÎ»ÒÆÖ®²îÊÇÒ»ºãÁ¿Çó³ö¼ÓËÙ¶È£®
£¨¶þ£©¸ù¾Ý±í¸ñÖеÄÊý¾ÝÃèµã×÷ͼ£¬½áºÏͼÏß·ÖÎöͼÏß²»¹ýÔµãµÄÔÒò£®
½â´ð
½â£º£¨Ò»£©¡¢EµãµÄ˲ʱËÙ¶ÈΪ£º
${v}_{E}=\frac{{x}_{DF}}{2T}=\frac{0.40}{0.2}m/s=0.20m/s$£¬
¸ù¾Ý¡÷x=aT2£¬ÔËÓÃÖð²î·¨µÃ£º
a=$\frac{{x}_{DG}-{x}_{AD}}{9{T}^{2}}=\frac{£¨6.60-3.00£©¡Á1{0}^{-2}}{9¡Á0.01}$=0.40m/s2£¬
£¨¶þ£©£¨1£©¸ù¾Ý±í¸ñÖеÄÊý¾ÝÃèµã×÷ͼ£¬ÈçͼËùʾ£®
£¨2£©ÓÉͼ¿ÉÖª£¬F²»µÈÓÚÁãʱ£¬aÈÔȻΪÁ㣬²Ù×÷ÖдæÔÚµÄÎÊÌâ¿ÉÄÜÊÇûÓÐÆ½ºâĦ²ÁÁ¦£¬»òƽºâĦ²ÁÁ¦²»×㣬¼´Æ½ºâĦ²ÁÁ¦Ê±Ä¾°åÇã½Ç¹ýС£¬¹ÊA¡¢BÕýÈ·£¬C¡¢D´íÎó£®
¹ÊÑ¡£ºAB£®
¹Ê´ð°¸Îª£º£¨Ò»£©0.20£¬0.40£»£¨¶þ£© £¨1£©ÈçͼËùʾ£»£¨2£©AB£®
µãÆÀ ±¾Ì⿼²éÁË¡°Ì½¾¿¼ÓËÙ¶ÈÓëÁ¦¡¢ÖÊÁ¿µÄ¹ØÏµ¡±»ù´¡ÊµÑ飬ÒâÔÚ¿¼²é¿¼Éú¶Ô¸ÃʵÑéµÄÔÀí·ÖÎöºÍʵÑéÊý¾Ý´¦ÀíÄÜÁ¦£®ÕÆÎÕÖ½´øµÄ´¦Àí·½·¨£¬»áͨ¹ýÖ½´øÇó½â˲ʱËٶȺͼÓËÙ¶È£®
| A£® | ÈôÏßȦλÖò»±ä£¬Ö»Ê¹´Å³¡¾ùÔÈÔö´ó£¬¸ÐÓ¦µçÁ÷Ôö´ó | |
| B£® | Èô´Å³¡±£³Ö²»±ä£¬Ö»Ê¹¦È½Ç¾ùÔȼõС£¬¸ÐÓ¦µçÁ÷±£³Ö²»±ä | |
| C£® | Èô´Å³¡¾ùÔȱ仯£¬Ö»Ê¹ÏßȦÔÑÊý±äΪÔÀ´µÄ2±¶£¬¸ÐÓ¦µçÁ÷±äΪÔÀ´µÄ2±¶ | |
| D£® | Èô´Å³¡¾ùÔȱ仯£¬Ö»Ê¹ÏßȦ°ë¾¶±äΪÔÀ´µÄ2±¶£¬¸ÐÓ¦µçÁ÷±äΪÔÀ´µÄ2±¶ |
| A£® | ²¨ÑØxÖáÕý·½Ïò´«²¥ | B£® | ²¨ÑØxÖḺ·½Ïò´«²¥ | ||
| C£® | ²¨ËÙΪ4m/s | D£® | ²¨ËÙΪ6m/s |
£¨1£©¸ù¾ÝͼÒÒ£¬Çë¼ÆËã0.20sʱ¿ÌµãµÄ˲ʱËÙ¶È£¬ÌîÈë±íÖУ®
| ʱ¿Ì£¨s£© | 0.20 | 0.24 | 0.28 | 0.32 | 0.36 |
| ËÙ¶È£¨m/s£© | 0.66 | 0.75 | 0.87 | 0.93 | 1.01 |
£¨3£©¸ù¾ÝÉÏÊöͼÏó£¬Çë˵Ã÷»¬¿éµÄÔ˶¯ÐÔÖÊ£º»¬¿éÏÈ×öÔȼÓËÙÔ˶¯£¬½Ó×Å×öÔÈËÙÔ˶¯£¬×îºóÔÙ×öÔȼÓËÙÔ˶¯
£¨4£©ÔÚʵÑé½áÊøºó£¬Í¬Ñ§ÃǶÔʵÑé½øÐÐÁË·´Ë¼£ºAͬѧÈÏΪ±¾ÊµÑéÓбØÒªÔÚ×ó¶ËµæÉÏСµæ¿éÒÔÆ½ºâĦ²ÁÁ¦£¬BͬѧÈÏΪûÓбØÒª£¬ÄãÈÏΪBµÄ¹ÛµãÕýÈ·£» CͬѧÈÏΪ±¾ÊµÑéÖÐÈý¸ö¹³ÂëÖÊÁ¿Ì«´ó£¬ÓбØÒª»»ÖÊÁ¿¸üСµÄÅäÖØ£¬ÒÔÂú×ã¡°ÖØÎïÖÊÁ¿mԶСÓÚ»¬¿éÖÊÁ¿M¡±ÕâÒ»Ìõ¼þ£¬DͬѧÈÏΪûÓбØÒª£¬ÄãÈÏΪDµÄ¹ÛµãÕýÈ·£»Í¬Ñ§ÃǶ¼ÈÏΪ¿ÉÒÔÓÉʵÑéÊý¾Ý´ÖÂÔ¼ÆËã³öľ¿éÓëɰֽ֮¼äµÄ¶¯Ä¦²ÁÒòÊý£¬ÆäֵΪ0.50£¨±£ÁôÁ½Î»ÓÐЧÊý×Ö£©£®
| A£® | µç³¡Á¦ÏÈÔö´óºó¼õС | B£® | µç³¡Á¦ÏÈ×ö¸º¹¦ºó×öÕý¹¦ | ||
| C£® | СÇò»úеÄÜÏÈÔö¼Óºó¼õС | D£® | СÇò×öÔȼÓËÙÔ˶¯ |
| A£® | r=$\root{3}{\frac{g{R}^{2}{T}^{2}}{4{¦Ð}^{2}p}}$ | B£® | r=$\root{3}{\frac{gR{T}^{2}p}{4{¦Ð}^{2}}}$ | C£® | r=$\root{3}{\frac{pg{R}^{2}{T}^{2}}{4{¦Ð}^{2}}}$ | D£® | r=$\root{3}{\frac{gR{T}^{2}}{4{¦Ð}^{2}p}}$ |