题目内容

9.如图所示,直角玻璃三棱镜置于空气中,已知∠A=60°,∠C=90°,一束极细的光于AC的中点D垂直AC面入射,AD=a,棱镜的折射率为n=$\sqrt{2}$.
(1)求此玻璃对空气的临界角;
(2)光从棱镜第一次射入空气时的折射角.

分析 (1)根据全反射临界角公式sinC=$\frac{1}{n}$求临界角C.
(2)画出光路图,判断光线在AB面和BC面上能否发生全反射,由几何知识求出光线第一次射入空气时的入射角,由折射定律求解折射角.

解答 解:(1)设玻璃对空气的临界角为C,
则$sinC=\frac{1}{n}=\frac{{\sqrt{2}}}{2}$,所以C=45°.
(2)如图所示 因为i1=60°>C,所以光线在AB面上将发生全反射.
由几何知识得:i2=i1-30°=30°<C,则光线从BC面上第一次射入空气.
由折射定律有:$\frac{sinr}{{sin{i_2}}}=\sqrt{2}$
得 r=45°
答:
(1)此玻璃的临界角是45°.
(2)光从棱镜第一次射入空气时的折射角是45°.

点评 本题是几何光学问题,做这类题目,一般首先要正确画出光路图,当光线从介质射入空气时要考虑能否发生全反射,要能灵活运用几何知识帮助我们分析角的大小.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网