题目内容

3.2014年11月1日早上6时42分,被誉为“嫦娥5号”的“探路尖兵”再人返回飞行试验返回器在内蒙古四于王旗预定区域顺利着陆,标志着我国已全面突破和掌握航天器以接近第二宇宙速度的高速再人返回关键技术,为“嫦娥5号”任务顺利实施和探月工程持续推进奠定了坚实基础.已知人造航天器在月球表面上空绕月球做匀速圆周运动,经过时间t(t小于航天器的绕行周期),航天器运动的弧长为s,航天器与月球的中心连线扫过角度为θ引力常量为G,则(  )
A.航天器的环绕周期为$\frac{2πt}{θ}$B.航天器的轨道半径为$\frac{θ}{s}$
C.月球的质量为$\frac{{s}^{3}}{G{t}^{2}θ}$D.月球的密度为$\frac{3{θ}^{2}}{4G{t}^{2}}$

分析 由万有引力充当向心力而做圆周运动的,则由万有引力公式及已知量可得出能计算的物理量.

解答 解:A、经过时间t,航天器与月球的中心连线扫过角度为θ则:$\frac{t}{T}=\frac{θ}{2π}$,得:$T=\frac{2πt}{θ}$.故A正确;
B、根据几何关系得:$r=\frac{s}{θ}$.故B错误;
C、由万有引力充当向心力而做圆周运动,所以:$\frac{GMm}{{r}^{2}}=\frac{m•4{π}^{2}r}{{T}^{2}}$所以:$M=\frac{4{π}^{2}{r}^{3}}{G{T}^{2}}=\frac{4{π}^{2}•(\frac{s}{θ})^{3}}{G•(\frac{2πt}{θ})^{2}}=\frac{{s}^{3}}{G{t}^{2}θ}$.故C正确;
D、人造航天器在月球表面上空绕月球做匀速圆周运动,月球的半径等于r,则月球的体积:$V=\frac{4}{3}π{r}^{3}=\frac{4}{3}π•\frac{{s}^{3}}{{θ}^{3}}$
月球的密度:$ρ=\frac{M}{V}=\frac{\frac{{s}^{3}}{G{t}^{2}θ}}{\frac{4}{3}π\frac{{s}^{3}}{{θ}^{3}}}=\frac{3{θ}^{2}}{4πG{t}^{2}}$.故D错误.
故选:AC

点评 万有引力在天体中的运动,主要是万有引力充当向心力,注意向心力的表达有多种形式,应灵活选择.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网