ÌâÄ¿ÄÚÈÝ

8£®ÈçͼËùʾ£¬´Ö²ÚµØÃæÉÏÓÐÒ»Çã½Ç¦È=30¡ã¹â»¬Ð±Ãæ£¬Ð±Ãæ¶¥¶Ë°²×°Ò»¶¨»¬ÂÖ£¬Ð¡Îï¿éA¡¢BÓÃÇáÉþÁ¬½Ó²¢¿ç¹ý»¬ÂÖ£¨²»¼Æ»¬ÂÖµÄÖÊÁ¿ºÍĦ²Á£©£®³õʼʱ¿Ì£¬Ð¡Îï¿éA¡¢BλÓÚͬһ¸ß¶È´¦²¢Ç¡ºÃ´¦ÓÚ¾²Ö¹×´Ì¬£®¼ô¶ÏÇáÉþºó£¬AÏÂÂä¡¢BÑØÐ±ÃæÏ»¬£¬Ð±Ãæ¾²Ö¹²»¶¯£®Ôò´Ó¼ô¶ÏÇáÉþµ½Îï¿é×Å£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Îï¿éA¡¢BÖÊÁ¿ÏàµÈB£®Îï¿éA¡¢BͬʱÂ䵨
C£®µØÃæÊܵ½Ð±ÃæÏò×óµÄĦ²ÁÁ¦D£®Á½Îï¿é×ŵØÊ±ÖØÁ¦µÄ˲¼ä¹¦ÂÊÏàͬ

·ÖÎö ¸ù¾ÝƽºâµÃ³öÁ½Îï¿éÖÊÁ¿µÄ¹ØÏµ£¬×¥×¡ÂäµØÊ±ËÙ¶È´óСÏàµÈ£¬½áºÏ˲ʱ¹¦ÂʵĹ«Ê½±È½ÏÂäµØÊ±Á½Îï¿éÖØÁ¦Ë²Ê±¹¦ÂʵĴóС¹ØÏµ£®¸ù¾Ý¼ÓËٶȲ»Í¬±È½ÏÔ˶¯µÄʱ¼ä£®Í¨¹ý¶ÔÐ±ÃæÌåÊÜÁ¦·ÖÎöÅжϵØÃæ¶ÔÐ±ÃæµÄĦ²ÁÁ¦£»

½â´ð ½â£ºA¡¢¸Õ¿ªÊ¼AB´¦ÓÚ¾²Ö¹×´Ì¬£¬ËùÒÔÓÐmBgsin¦È=mAg£¬ÔòmB£¾mA£¬¹ÊA´íÎó£®
B¡¢ÒòΪÂ䵨µÄËÙ¶È´óСÏàµÈ£¬¼ÓËٶȲ»µÈ£¬¸ù¾ÝËÙ¶Èʱ¼ä¹«Ê½Öª£¬Ô˶¯µÄʱ¼ä²»µÈ£¬¹ÊB´íÎó
C¡¢ÒòΪB¶ÔÐ±ÃæÓÐбÏò×óÏ·½µÄѹÁ¦£¬Ð±ÃæÓÐÏò×óÔ˶¯µÄÇ÷ÊÆ£¬ËùÒÔµØÃæ¶ÔÐ±ÃæÏòÓҵľ²Ä¦²ÁÁ¦£¬¸ù¾ÝÅ£¶ÙµÚÈý¶¨ÂÉ£¬µØÃæÊܵ½Ð±ÃæÏò×óµÄĦ²ÁÁ¦£¬¹ÊCÕýÈ·£»
D¡¢¼ô¶ÏÇáÉþºóA×ÔÓÉÏÂÂ䣬BÑØÐ±ÃæÏ»¬£¬AB¶¼Ö»ÓÐÖØÁ¦×ö¹¦£¬¸ù¾Ý»úеÄÜÊØºã¶¨Âɵãºmgh=$\frac{1}{2}m{v}_{\;}^{2}$£¬ËÙ¶È´óСv=$\sqrt{2gh}$£¬ÔòAÖØÁ¦µÄ¹¦ÂÊ${P}_{A}^{\;}={m}_{A}^{\;}g\sqrt{2gh}$£¬BÖØÁ¦µÄ¹¦ÂÊ${P}_{B}^{\;}={m}_{B}^{\;}g\sqrt{2gh}sin¦È$£¬¿ÉÖªPA=PB£¬¹ÊDÕýÈ·£®
¹ÊÑ¡£ºCD

µãÆÀ ±¾Ì⿼²éÁ˹²µãÁ¦Æ½ºâ¡¢»úеÄÜÊØºã¡¢¹¦ÂʵĻù±¾ÔËÓã¬Í¨¹ýƽºâµÃ³öA¡¢BµÄÖÊÁ¿¹ØÏµÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£¬×¢Òâ˲ʱ¹¦ÂʵÈÓÚÁ¦ÓëËÙ¶ÈÒÔ¼°Ö®¼ä¼Ð½ÇÓàÏҵij˻ý£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
13£®Ä³Í¬Ñ§ÀûÓÃÈçͼËùʾµÄÆøµæµ¼¹ì×°ÖÃÑéÖ¤»úеÄÜÊØºã¶¨ÂÉ£®ÔÚÆøµæµ¼¹ìÉϰ²×°ÁËÏàͬµÄÁ½¹âµçÃÅ1¡¢2£¬»¬¿éÉϹ̶¨Ò»ÕÚ¹âÌõ£¬»¬¿éÓÃϸÏßÈÆ¹ýÇáÖʶ¨»¬ÂÖÓë¹³ÂëÏàÁ¬£®
£¨1£©ÊµÑéʱҪµ÷ÕûÆøµæµ¼¹ìˮƽ£®²»¹Ò¹³ÂëºÍϸÏߣ¬½ÓÍ¨ÆøÔ´£¬Èç¹û»¬¿éÄÜÔÚÆøµæµ¼¹ìÉϾ²Ö¹£¬»ò×öÔÈËÙÔ˶¯£¬»ò»¬¿é¾­Á½¸ö¹âµçÃŵÄʱ¼äÏàµÈ£¬Ôò±íÊ¾Æøµæµ¼¹ìÒѵ÷ÕûÖÁˮƽ״̬£®
£¨2£©²»¹Ò¹³ÂëºÍϸÏߣ¬½ÓÍ¨ÆøÔ´£¬»¬¿é´Ó¹ìµÀÓÒ¶ËÏò×óÔ˶¯µÄ¹ý³ÌÖУ¬·¢ÏÖ»¬¿éͨ¹ý¹âµçÃÅ1µÄʱ¼äСÓÚͨ¹ý¹âµçÃÅ2µÄʱ¼ä£®ÊµÊ©ÏÂÁдëÊ©Äܹ»Èõ¼¹ìˮƽµÄÊÇA£®
A£®µ÷½ÚPʹ¹ìµÀ×ó¶ËÉý¸ßһЩ
B£®µ÷½ÚQʹ¹ìµÀÓÒ¶ËÉý¸ßһЩ
C£®µ÷½Ú¹âµçÃÅÖ®¼ä¾àÀëСһЩ
D£®ÕÚ¹âÌõµÄ¿í¶ÈÓ¦Êʵ±´óһЩ
E£®ÆøÔ´µÄ¹©ÆøÁ¿Êʵ±Ôö´óһЩ
£¨3£©ÊµÑéʱ£¬²â³ö¹âµçÃÅ1¡¢2¼äµÄ¾àÀëL£¬ÕÚ¹âÌõµÄ¿í¶Èd£¬»¬¿éºÍÕÚ¹âÌõµÄ×ÜÖÊÁ¿M£¬¹³ÂëÖÊÁ¿m£®ÓÉÊý×Ö¼ÆÊ±Æ÷¶Á³öÕÚ¹âÌõͨ¹ý¹âµçÃÅ1¡¢2µÄʱ¼ät1¡¢t2£¬Ôò»¬¿éºÍ¹³Âë×é³ÉµÄϵͳ»úеÄÜÊØºã³ÉÁ¢µÄ±í´ïʽÊÇ$mgL=\frac{1}{2}£¨M+m£©£¨\frac{d}{{t}_{1}^{\;}}£©_{\;}^{2}-\frac{1}{2}£¨M+m£©£¨\frac{d}{{t}_{2}^{\;}}£©_{\;}^{2}$=$\frac{1}{2}£¨M+m£©{d}_{\;}^{2}£¨\frac{1}{{t}_{1}^{2}}-\frac{1}{{t}_{2}^{2}}£©$£®

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø