ÌâÄ¿ÄÚÈÝ
18£®£¨1£©Çóµç³¡Ç¿¶ÈµÄ´óС£»
£¨2£©ÈôÁ£×Ó½øÈë´Å³¡ºó£¬½Óמ¹ýÁËyÖáÉÏy=-2h´¦µÄP3µã£¬Çó´Å¸ÐӦǿ¶ÈµÄ´óС£®
·ÖÎö £¨1£©Á£×ÓÔڵ糡ÖÐ×öƽÅ×Ô˶¯£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɼ°Ô˶¯Ñ§¹«Ê½£¬¿ÉÇóµÃµç³¡Ç¿¶ÈEµÄ´óС£»
£¨2£©Á£×Ó´ÓPµ½OµÄ¹ý³ÌÖе糡Á¦×öÕý¹¦£¬ÔËÓö¯Äܶ¨ÀíÁÐʽ£¬¿ÉÇóµÃËٶȵĴóС£»Á£×ÓÑØ-y·½Ïò½øÈë´Å³¡Ê±£¬ÓÉ×óÊÖ¶¨ÔòÅжϿÉÖªÁ£×ÓÏòÓÒÆ«×ª£¬×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÓÉÂåÂ××ÈÁ¦³äµ±ÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ¿ÉÇó³öÆä´Å¸ÐӦǿ¶ÈµÄ´óС£®
½â´ð ½â£º
£¨1£©Á£×ÓÔ˶¯¹ì¼£Èçͼ¼×Ëùʾ£¬Ôڵ糡ÖÐ$a=\frac{Eq}{m}$£¬
´¹Ö±µç³¡·½ÏòÉÏ£º
2h=v0t
ÑØµç³¡·½ÏòÉÏÓУº$h=\frac{1}{2}a{t}^{2}$
ÁªÁ¢½âµÃ£º
$E=\frac{{m{v_0}^2}}{2qh}$
£¨2£©Ôڵ糡ÖÐvy=at=v0£¬
½øÈë´Å³¡µÄËÙ¶È$v=\sqrt{{v_0}^2+{v_y}^2}=\sqrt{2}{v_0}$£¬
·½ÏòÓëxÖá³É45¡ã£®Ôڴų¡ÖУ¬Á¬½ÓP2¡¢P3Á½µã£¬Óɼ¸ºÎ¹ØÏµÖª£¬P2P3ΪԲ»¡µÄÖ±¾¶
ÔòÓɼ¸ºÎ¹ØÏµ¿ÉÖª£º
$R=\sqrt{2}h$£¬ÓÖÓÉ$qBv=m\frac{v^2}{R}$¿ÉµÃ£º
$B=\frac{mv}{qR}=\frac{{m{v_0}}}{qh}$
´ð£º£¨1£©Çóµç³¡Ç¿¶ÈµÄ´óСΪ$\frac{m{{v}_{0}}^{2}}{2qh}$£»
£¨2£©´Å¸ÐӦǿ¶ÈµÄ´óСΪ$\frac{m{v}_{0}}{qh}$£®
µãÆÀ ±¾ÌâÖÐÔËÓÃÔ˶¯µÄ·Ö½â·¨Ñо¿ÀàÆ½Å×Ô˶¯£¬»¹ì¼£Ñо¿Á£×ÓÔڴų¡ÖÐÔ²ÖÜÔ˶¯£¬Êdz£Óõķ½·¨£» Ö÷Òª¿¼²éÔËÓÃÊýѧ·½·¨½â¾öÎïÀíÎÊÌâµÄÄÜÁ¦£®
| A£® | ¦ÂË¥±äËùÊͷŵĵç×ÓÊÇÔ×ÓºËÄÚµÄÖÐ×Óת±äΪÖÊ×ÓʱËù²úÉúµÄ | |
| B£® | Èôʹ·ÅÉäÐÔÎïÖʵÄζÈÉý¸ß£¬Æä°ëË¥ÆÚ½«¼õС | |
| C£® | ÔÚ¦Á¡¢¦Â¡¢¦ÃÕâÈýÖÖÉäÏßÖУ¬¦ÃÉäÏߵĴ©Í¸ÄÜÁ¦×îÇ¿£¬¦ÂÉäÏߵĵçÀëÄÜÁ¦×îÇ¿ | |
| D£® | Ó˺ˣ¨${\;}_{92}^{238}$U£©Ë¥±äΪǦºË£¨${\;}_{82}^{206}$Pb£©µÄ¹ý³ÌÖУ¬Òª¾¹ý8´Î¦ÁË¥±äºÍ10´Î¦ÂË¥±ä |
| A£® | ¦ÁÉäÏßÊÇ´øÕýµç¡¢¸ßËÙµÄÁ£×ÓÁ÷£¨${\;}_{2}^{4}$He£©£¬µçÀë×÷ÓÃ×îÇ¿£¬´©Í¸ÄÜÁ¦×îÈõ | |
| B£® | ¦ÂÉäÏßÊÇ´ø¸ºµç¡¢¸ßËÙÔ˶¯µÄµç×ÓÁ÷£¨${\;}_{-1}^{0}$e£© | |
| C£® | ¦ÃÉäÏßÊǵçÀë×÷ÓÃ×îÈõ¡¢´©Í¸ÄÜÁ¦×îÇ¿µÄµç´Å²¨£¬Ôڵ糡Öкʹų¡ÖÐÄÜ·¢Éúƫת | |
| D£® | ÈýÖÖÉäÏß¶¼ÊÇ´ÓÔ×ÓºËÀï·ÅÉä³öÀ´µÄ£¬¦ÃÉäÏßÊǰéËæ×ŦÁË¥±ä»ò¦ÂË¥±ä¶ø²úÉúµÄ |
| A£® | $\frac{sin¡ÏSOB}{sin¦Á}$ | B£® | $\frac{cos¡ÏSOB}{sin¦Â}$ | C£® | $\frac{cos¡ÏSOB}{sin¦Á}$ | D£® | $\frac{cos¡ÏSOB}{cos¦Á}$ |
| A£® | ÔÚ0¡«1sÄÚ×öÔÈËÙÔ˶¯ | B£® | ÔÚ1s¡«4sÄÚ×öÔȼÓËÙÔ˶¯ | ||
| C£® | ÔÚ0¡«1sÄÚ¼ÓËÙ¶È´óСΪ10m/s2 | D£® | ÔÚ1s¡«4sÄÚ¼ÓËÙ¶È´óСΪ10m/s2 |
| A£® | ÓÃ12.09eVµÄ¹â×ÓÕÕÉä | B£® | ÓÃ12.55eVµÄ¹â×ÓÕÕÉä | ||
| C£® | ÓÃ12.55eVµÄµç×Óºä»÷ | D£® | ÓÃ14.0eVµÄµç×Óºä»÷ |