ÌâÄ¿ÄÚÈÝ
18£®| A£® | ½ðÊô°ô×öÔȼÓËÙÖ±ÏßÔ˶¯ | |
| B£® | ½ðÊô°ôÓëµ¼¹ì¼äÒòĦ²Á²úÉúµÄÈÈÁ¿Îª10J | |
| C£® | ͨ¹ýµç×èRµÄ¸ÐÓ¦µçºÉÁ¿Îª0.5C | |
| D£® | µç×èR²úÉúµÄ½¹¶úÈÈΪ0.5J |
·ÖÎö ½áºÏÔȱäËÙÖ±ÏßÔ˶¯µÄËÙ¶ÈÎ»ÒÆ¹«Ê½ÁÐʽ·ÖÎöÔ˶¯ÐÔÖÊ£»Ä¦²Á²úÉúµÄÈÈÁ¿µÈÓÚ¿Ë·þĦ²ÁÁ¦×öµÄ¹¦£»¸ù¾ÝµçÁ÷µÄƽ¾ùÖµÇó½âµçÁ¿£¬Çó½âµçÈÈÒªÓõçÁ÷µÄÓÐЧֵ£®
½â´ð ½â£ºA¡¢v-xͼÏóÊÇÖ±Ïߣ¬Èç¹ûÊÇÔȼÓËÙÖ±ÏßÔ˶¯£¬¸ù¾Ý${v}^{2}-{v}_{0}^{2}=2ax$£¬v-xͼÏóÓ¦¸ÃÊÇÇúÏߣ¬¹Ê½ðÊô°ô×ö±ä¼ÓËÙÖ±ÏßÔ˶¯£¬¹ÊA´íÎó£»
B¡¢½ðÊô°ôÓëµ¼¹ì¼äÒòĦ²Á²úÉúµÄÈÈÁ¿µÈÓÚ¿Ë·þĦ²ÁÁ¦×öµÄ¹¦£¬Îª£ºQ1=¦Ìmgcos30¡ã•x=$\frac{\sqrt{3}}{3}¡Á2¡Á10¡Á\frac{\sqrt{3}}{2}¡Á1$J=10J£»¹ÊBÕýÈ·£»
C¡¢Í¨¹ýµç×èRµÄ¸ÐÓ¦µçºÉÁ¿£ºq=$\overline{I}t=\frac{\overline{E}}{R+r}t=\frac{\frac{¡÷∅}{t}}{R+r}t=\frac{¡÷∅}{R+r}$=$\frac{BLx}{R+r}=\frac{1¡Á1¡Á1}{1+1}$=0.5C£»¹ÊCÕýÈ·£»
D¡¢µç·ÖвúÉúµÄ½¹¶úÈȵÈÓÚ¿Ë·þ°²ÅàÁ¦×öµÄ¹¦£¬Îª£º
Q=FA•¡Æx=$\frac{{B}^{2}{L}^{2}v}{R+r}•$¡Æx
½áºÏv-xͼÏ󣬯äÖÐv•¡ÆxΪͼÏóÓëºáÖá°üΧµÄÃæ»ý£¬¹Êv•¡Æx=1£»
¹ÊQ=$\frac{{B}^{2}{L}^{2}v}{R+r}•$¡Æx=$\frac{{1}^{2}¡Á{1}^{2}¡Á1}{1+1}=0.5J$
ÓÉÓÚR=r£¬¹ÊR²úÉúµÄ½¹¶úÈÈΪ0.25J£¬¹ÊD´íÎó£»
¹ÊÑ¡£ºBC£®
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÃ÷È·µ¼Ìå°ôµÄÊÜÁ¦Çé¿ö¡¢Ô˶¯Çé¿öºÍµç·ÖеÄÄÜÁ¿×ª»¯Çé¿ö£¬Ã÷ȷƽ¾ùÖµÓÐÓÐЧֵµÄÇø·Ö£¬²»ÄÑ£®
| A£® | Ôö´óµ¼Ìå°ôÖеĵçÁ÷ | B£® | ¼õÉÙ´ÅÌúµÄÊýÁ¿ | ||
| C£® | µßµ¹´ÅÌú´Å¼«µÄÉÏÏÂλÖà | D£® | ¸Ä±äµ¼Ìå°ôÖеĵçÁ÷·½Ïò |
| A£® | vf | B£® | $\frac{v}{f}$ | C£® | $\frac{f}{v}$ | D£® | f |
| A£® | Á½ÎïÌåÖ®¼äµÄ×÷ÓÃÁ¦ºÍ·´×÷ÓÃÁ¦µÄ´óС²»Ò»¶¨ÏàµÈ | |
| B£® | Á½ÎïÌåÖ®¼äµÄ×÷ÓÃÁ¦ºÍ·´×÷ÓÃÁ¦²»×÷ÓÃÔÚÒ»ÌõÖ±ÏßÉÏ | |
| C£® | Á½ÎïÌåÖ®¼äµÄ×÷ÓÃÁ¦ºÍ·´×÷ÓÃÁ¦×ÜÊÇ´óСÏàµÈ | |
| D£® | Á½ÎïÌåÖ®¼äµÄ×÷ÓÃÁ¦ºÍ·´×÷ÓÃÁ¦×÷ÓÃÔÚͬһ¸öÎïÌåÉÏ |