ÌâÄ¿ÄÚÈÝ
12£®ÔÚ¡°ÑéÖ¤»úеÄÜÊØºã¶¨ÂÉ¡±ÊµÑéÖУ¬´òµã¼ÆÊ±Æ÷½ÓÔÚµçѹΪU£¬ÆµÂÊΪfµÄ½»Á÷µçÔ´ÉÏ£¬ÔÚʵÑéÖдòÏÂÒ»ÌõÀíÏëÖ½´ø£¬ÈçͼËùʾ£¬Ñ¡È¡Ö½´øÉÏ´ò³öµÄÁ¬ÐøµÄ5¸öµãA¡¢B¡¢C¡¢D¡¢E£¬²â³öA¡¢BÁ½µã¼äµÄ¾àÀëΪx1£¬B¡¢CÁ½µãµÄ¾àÀëΪx2£¬C¡¢DÁ½µã¼äµÄ¾àÀëΪx3£¬D¡¢EÁ½µã¼äµÄ¾àÀëΪx4£¬²âµÃÖØ´¸µÄÖÊÁ¿Îªm£¬ÒÑÖªµ±µØµÄÖØÁ¦¼ÓËÙ¶ÈΪg£¬Ôò£¨1£©´Ó´òÏÂBµ½´òÏÂDµãµÄ¹ý³ÌÖУ¬ÖØ´¸ÖØÁ¦ÊÆÄܵļõÉÙÁ¿¡÷EP=mg£¨x2+x3£©£¬ÖØ´¸¶¯ÄܵÄÔö¼ÓÁ¿¡÷Ek=$\frac{m[£¨{x}_{3}+{x}_{4}£©^{2}-£¨{x}_{1}+{x}_{2}£©^{2}]}{8{T}^{2}}$
£¨2£©ÖØ´¸ÏÂÂäµÄ¼ÓËÙ¶Èa=$\frac{{x}_{3}+{x}_{4}-{x}_{1}-{x}_{2}}{4{T}^{2}}$£®
·ÖÎö £¨1£©¸ù¾ÝϽµµÄ¸ß¶ÈÇó³öÖØÁ¦ÊÆÄܵļõСÁ¿£¬¸ù¾Ýij¶Îʱ¼äÄ򵀮½¾ùËٶȵÈÓÚÖмäʱ¿ÌµÄ˲ʱËÙ¶ÈÇó³öDµãµÄËÙ¶È£¬´Ó¶øµÃ³ö¶¯ÄܵÄÔö¼ÓÁ¿£®
£¨2£©¸ù¾ÝÁ¬ÐøÏàµÈʱ¼äÄÚµÄÎ»ÒÆÖ®²îÊÇÒ»ºãÁ¿£¬ÔËÓÃÖð²î·¨Çó³öÖØ´¸ÏÂÂäµÄ¼ÓËÙ¶È£®
½â´ð ½â£º£¨1£©´Ó´òÏÂBµ½´òÏÂDµãµÄ¹ý³ÌÖУ¬ÖØ´¸ÖØÁ¦ÊÆÄܵļõÉÙÁ¿Îª£º¡÷EP=mg£¨x2+x3£©£¬BµãµÄ˲ʱËÙ¶ÈΪ£º${v}_{B}=\frac{{x}_{1}+{x}_{2}}{2T}$£¬DµãµÄ˲ʱËÙ¶ÈΪ£º${v}_{D}=\frac{{x}_{3}+{x}_{4}}{2T}$£¬Ôò¶¯ÄܵÄÔö¼ÓÁ¿Îª£º$¡÷{E}_{k}=\frac{1}{2}m{{v}_{D}}^{2}-\frac{1}{2}m{{v}_{B}}^{2}$=$\frac{m[£¨{x}_{3}+{x}_{4}£©^{2}-£¨{x}_{1}+{x}_{2}£©^{2}]}{8{T}^{2}}$£®
£¨2£©¸ù¾Ý¡÷x=aT2£¬ÔËÓÃÖð²î·¨µÃ£¬¼ÓËÙ¶ÈΪ£ºa=$\frac{{x}_{3}+{x}_{4}-{x}_{1}-{x}_{2}}{4{T}^{2}}$£®
¹Ê´ð°¸Îª£º£¨1£©mg£¨x2+x3£©£¬$\frac{m[£¨{x}_{3}+{x}_{4}£©^{2}-£¨{x}_{1}+{x}_{2}£©^{2}]}{8{T}^{2}}$£¬£¨2£©$\frac{{x}_{3}+{x}_{4}-{x}_{1}-{x}_{2}}{4{T}^{2}}$£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÕÆÎÕÖ½´øµÄ´¦Àí·½·¨£¬»áͨ¹ýÖ½´øÇó½â˲ʱËÙ¶È£¬´Ó¶øµÃ³ö¶¯ÄܵÄÔö¼ÓÁ¿£¬»á¸ù¾ÝϽµµÄ¸ß¶ÈÇó½âÖØÁ¦ÊÆÄܵļõСÁ¿£®
| A£® | ¼×ÒÒÁ½³µÔÚÕâ¶Îʱ¼äÄÚÇ£ÒýÁ¦×ö¹¦Ö®±ÈΪ3£º2 | |
| B£® | ¼×ÒÒÁ½³µÔÚÕâ¶Îʱ¼äÄÚµÄÎ»ÒÆÖ®±ÈΪ4£º3 | |
| C£® | ¼×ÒÒÁ½³µÔÚÕâ¶Îʱ¼äÄÚ¿Ë·þ×èÁ¦×ö¹¦Ö®±ÈΪ12£º11 | |
| D£® | ¼×³µµÄ¹¦ÂÊÔö´óµ½ÔÀ´µÄ4±¶ |
| A£® | PM10±íʾֱ¾¶Ð¡ÓÚ»òµÈÓÚ1.0¡Á10-6 mµÄÐü¸¡¿ÅÁ£Îï | |
| B£® | PM10Êܵ½µÄ¿ÕÆø·Ö×Ó×÷ÓÃÁ¦µÄºÏÁ¦Ê¼ÖÕµÈÓÚÆäÊܵ½µÄÖØÁ¦ | |
| C£® | PM2.5Ũ¶ÈËæ¸ß¶ÈµÄÔö¼ÓÖð½¥Ôö´ó | |
| D£® | PM10ºÍ´óÐü¸¡¿ÅÁ£Îï¶¼ÔÚ×ö²¼ÀÊÔ˶¯ |