题目内容
分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,将A、B两点的速度进行分解,求出竖直方向上的分速度,根据速度速度时间公式、速度位移公式求出运动的时间和高度差.
解答:解:A、tan45°=
,所以vAy=v0tan45°=10m/s.
tan60°=
,所以vBy=v0tan60°=10
m/s.
则小球通过A、B两点的运动时间t=
=
s=(
-1)s.故A正确,B错误.
C、h=
=
m=10m.故C正确,D错误.
故选AC.
| vAy |
| v0 |
tan60°=
| vBy |
| v0 |
| 3 |
则小球通过A、B两点的运动时间t=
| vBy-vAy |
| g |
10
| ||
| 10 |
| 3 |
C、h=
| vBy2-vAy2 |
| 2g |
| 300-100 |
| 20 |
故选AC.
点评:解决本题的关键掌握平抛运动水平方向和竖直方向上的运动规律,运用运动学公式进行求解.
练习册系列答案
相关题目