题目内容

7.A、B两汽车分别以vA=20m/s、vB=8m/s的速度在两平行车道上匀速行驶,某时刻车在A车的前方x=11m时,A车立即刹车,做加速度大小为a=2m/s2匀减速运动,B车的速度不变,求两车相遇的时刻(从A刹车开始计时).

分析 先求出A车停止运动时所用的时间,由位移公式求出两车的位移,分析是否相遇,再由汽车的运动状态,分析解答.

解答 解:设A车从刹车到停止运动的时间为t.
则 t=$\frac{{v}_{A}}{a}$=$\frac{20}{2}$=10s
此过程A车的位移为 xA=$\frac{{v}_{A}}{2}t$=$\frac{20}{2}×$10m=100m
B车的位移 xB=vBt=80m
因为 xA+x>xB,所以A车停止时B还没有追上A
设B还需要时间t′追上A车,则 t′=$\frac{{x}_{A}+x-{x}_{B}}{{v}_{B}}$=$\frac{100+11-80}{8}$s=3.875s
故t=t+t′=13.875s
答:两车相遇的时刻是A刹车后13.875s.

点评 对于追击问题,关键要正确分析汽车的运动情况,要通过计算进行判断,不能死代公式,容易造成结果不合理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网