ÌâÄ¿ÄÚÈÝ
11£®£¨1£©»³ö½ðÊôСÇòµÄÊÜÁ¦Í¼£¬²¢Çó³öϸÏß¶ÔСÇòÀÁ¦µÄ´óС£»
£¨2£©»³ö¸ÃͬѧµÄÊÜÁ¦Í¼£¬²¢ÇóµØÃæ×÷ÓÃÓÚ¸ÃͬѧµÄÖ§³ÖÁ¦ºÍĦ²ÁÁ¦µÄ´óС£¿
·ÖÎö £¨1£©Ð¡Çò´¦ÓÚ¾²Ö¹×´Ì¬£¬ºÏÍâÁ¦ÎªÁ㣬·ÖÎöСÇòµÄÊÜÁ¦Çé¿ö£¬¸ù¾ÝƽºâÌõ¼þÇó½âÐü¹ÒСÇòµÄϸÏßµÄÀÁ¦´óС£»
£¨2£©¶ÔÈËÑо¿£¬·ÖÎöÊÜÁ¦Çé¿ö£¬ÓÉÆ½ºâÌõ¼þÇó½âµØÃæµÄÖ§³ÖÁ¦ºÍĦ²ÁÁ¦´óС£®
½â´ð
½â£º£¨1£©¶ÔСÇòÊÜÁ¦·ÖÎö£ºÖØÁ¦¡¢Ï¸ÏßµÄÀÁ¦ºÍ´ÅÌúµÄÒýÁ¦£®ÉèϸÏßµÄÀÁ¦ºÍ´ÅÌúµÄÒýÁ¦·Ö±ðΪF1ºÍF2£®
¸ù¾ÝƽºâÌõ¼þµÃ£º
ˮƽ·½Ïò£ºF1sin¦È=F2sin¦È
ÊúÖ±·½Ïò£ºF1cos¦È+F2cos¦È=mg
½âµÃ£¬F1=F2=$\frac{mg}{2cos¦È}$£®
£¨2£©ÒÔÈËΪÑо¿¶ÔÏ󣬷ÖÎöÊÜÁ¦Çé¿ö£ºÖØÁ¦Mg¡¢µØÃæµÄÖ§³ÖÁ¦N¡¢¾²Ä¦²ÁÁ¦fºÍСÇòµÄÒýÁ¦F2¡ä£¬
F2¡ä=F2=$\frac{\sqrt{3}}{3}$mg£®
¸ù¾ÝƽºâÌõ¼þµÃ
f=F2¡äsin¦È
N=F2¡äcos¦È+Mg
½âµÃ£º
N=Mg+$\frac{1}{2}$mg
f=$\frac{1}{2}$mgtan¦È
´ð£º£¨1£©½ðÊôСÇòµÄÊÜÁ¦ÈçͼËùʾ£¬Ðü¹ÒСÇòµÄϸÏßµÄÀÁ¦´óСΪ$\frac{mg}{2cos¦È}$£®
£¨2£©¸ÃͬѧµÄÊÜÁ¦ÈçͼËùʾ£¬¸ÃͬѧÊܵ½µØÃæµÄÖ§³ÖÁ¦ºÍĦ²ÁÁ¦´óС·Ö±ðΪMg+$\frac{1}{2}$mg¡¢$\frac{1}{2}$mgtan¦È£®
µãÆÀ ±¾Ìâ·ÖÎöÊÜÁ¦Çé¿öÊǽâÌâµÄ¹Ø¼ü£¬ÔÙ¸ù¾ÝƽºâÌõ¼þ½øÐÐÇó½â£®
| A£® | ²¨¶¯ËµÈÏΪÃ÷ÌõÎÆÊǹⲨµþ¼ÓµÄ¼ÓÇ¿Çø | |
| B£® | ²¨¶¯ËµÈÏΪ°µÌõÎÆÊǹⲨµþ¼ÓµÄ¼õÈõÇø | |
| C£® | ¹â×Ó˵ÈÏΪÃ÷ÌõÎÆÊǹâ×Óµ½´ï¸ÅÂʽϴóµÄÇøÓò | |
| D£® | ¹â×Ó˵ÈÏΪ°µÌõÎÆÊǹâ×Óµ½´ï¸ÅÂʽÏСµÄÇøÓò |
| A£® | ÈÈÃôµç×èÊÇÄܹ»°ÑÈÈÁ¿Õâ¸öÈÈѧÁ¿×ªÎªµç×èÕâ¸öµçѧÁ¿ | |
| B£® | ¹âÃôµç×èÊÇÄܹ»°Ñ¹âÕÕÇ¿ÈõÕâ¸ö¹âѧÁ¿×ªÎªµç×èÕâ¸öµçѧÁ¿ | |
| C£® | Ó¦±äƬÊÇÄܹ»°ÑÎïÌåÐαäÕâ¸öÁ¦Ñ§Á¿×ª»»³ÉµçѹÕâ¸öµçѧÁ¿ | |
| D£® | »ô¶ûÔª¼þÊÇÄܹ»°Ñ´Å¸ÐӦǿ¶ÈÕâ¸ö´ÅѧÁ¿×ª»»ÎªµçѹÕâ¸öµçѧÁ¿ |
| A£® | ½ðÊô¿òÔÈËÙÔ˶¯¹ý³ÌÖиÐÓ¦µçÁ÷ÏÈΪ˳ʱÕë·½Ïò¡¢ºóÎªÄæÊ±Õë·½Ïò | |
| B£® | ÔÈÇ¿´Å³¡µÄ´Å¸ÐӦǿ¶ÈBµÄ´óСΪ1.0T | |
| C£® | ½ðÊô¿òµÄ´©¹ý´Å³¡µÄ¹ý³ÌÖвúÉúµÄµçÄÜΪ0.5J | |
| D£® | ½ðÊô¿òÔڴų¡ÖдÅͨÁ¿µÄ×î´óֵΪ0.5Wb |
| A£® | 15N¡¢5N¡¢6N | B£® | 3N¡¢6N¡¢4N | C£® | 1N¡¢2N¡¢10N | D£® | 1N¡¢6N¡¢8N |
| A£® | $\frac{t}{2}$ | B£® | $\frac{t}{\sqrt{2}}$ | C£® | $\frac{t}{\sqrt{2}+1}$ | D£® | $\frac{t}{\sqrt{2}-1}$ |
| A£® | ´Ë¹«Ê½ÊÊÓÃÓÚ¼ÆËãÈκε糡ÖÐa¡¢bÁ½µã¼äµÄµçÊÆ²î | |
| B£® | aµãºÍb¾àÀëÔ½´ó£¬ÔòÕâÁ½µãµÄµçÊÆ²îÔ½´ó | |
| C£® | ¹«Ê½ÖеÄdÊÇÖ¸aµãºÍbµãÖ®¼äµÄ¾àÀë | |
| D£® | ¹«Ê½ÖеÄdÊÇa¡¢bÁ½¸öµÈÊÆÃæ¼äµÄ´¹Ö±¾àÀë |