ÌâÄ¿ÄÚÈÝ
| T | 6 |
£¨1£©Á£×ÓÔÚÁ½°åÖ®¼äµÄ¼ÓËÙ¶È´óСΪ¶à´ó£¿
£¨2£©¸ÃÁ£ÓèÔÚÁ½°åÖ®¼äÔ˶¯Ò»¸öÖÜÆÚTʱ£¬Ëü¾àa°åµÄ¾àÀëΪ¶àÉÙ£¿£¨ÒÑÖªÁ£×Ó²»»áÓë½ðÊô°åÏàÅö£©
·ÖÎö£º¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó¼ÓËÙ¶È£»¶ÔÁ£×ÓµÄÔ˶¯·Ö¶ÎÑо¿£¬·Ö±ðÇó³ö¸÷¶ÎµÄÎ»ÒÆ£¬¿ÉÒÔÀûÓÃÔȼÓËÙºÍÔȼõËÙÔ˶¯µÄ¶Ô³ÆÐÔÇó¼õËÙµÄÎ»ÒÆ£®
½â´ð£º½â£º£¨1£©ÉèÁ£×ӵļÓËÙ¶È´óСΪa£¬ÓУº
qE=ma
ÆäÖÐE=
ÁªÁ¢µÃ£ºa=
£¨2£©Á£×ÓÔÚ
ÖÁ
ÄÚÏòÓÒÔȼÓËÙ£¬Ôò£º
X1=
a(
)2=
Á£×ÓÔÚ
-
ÄÚÏòÓÒÔȼõËÙµ½ËÙ¶ÈΪÁ㣬Ôò£º
X2=X1=
-
ÄÚ·´ÏòÏò×óÔȼÓËÙ£¬Ôò£º
X3=
a(
)2=
Á£×ÓÔÚ
-
ÄÚ·´ÏòÏò×óÔȼõËÙµ½ËÙ¶ÈΪÁ㣬Ôò£º
X4=X3
ËùÒÔÁ£×Ó¾àa°å¾àÀëΪ£º
X=X1+X2-X3-X4=
´ð£º£¨1£©Á£×ÓÔÚÁ½°åÖ®¼äµÄ¼ÓËÙ¶È´óСΪ
£¨2£©¸ÃÁ£ÓèÔÚÁ½°åÖ®¼äÔ˶¯Ò»¸öÖÜÆÚTʱ£¬Ëü¾àa°åµÄ¾àÀëΪ
qE=ma
ÆäÖÐE=
| U |
| d |
ÁªÁ¢µÃ£ºa=
| qU |
| md |
£¨2£©Á£×ÓÔÚ
| T |
| 6 |
| T |
| 2 |
X1=
| 1 |
| 2 |
| 2T |
| 6 |
| qUT2 |
| 18md |
Á£×ÓÔÚ
| 3T |
| 6 |
| 5T |
| 6 |
X2=X1=
| qUT2 |
| 18md |
| 5T |
| 6 |
| 6T |
| 6 |
X3=
| 1 |
| 2 |
| T |
| 6 |
| qUT2 |
| 72md |
Á£×ÓÔÚ
| 6T |
| 6 |
| 7T |
| 6 |
X4=X3
ËùÒÔÁ£×Ó¾àa°å¾àÀëΪ£º
X=X1+X2-X3-X4=
| qUT2 |
| 12md |
´ð£º£¨1£©Á£×ÓÔÚÁ½°åÖ®¼äµÄ¼ÓËÙ¶È´óСΪ
| qU |
| md |
£¨2£©¸ÃÁ£ÓèÔÚÁ½°åÖ®¼äÔ˶¯Ò»¸öÖÜÆÚTʱ£¬Ëü¾àa°åµÄ¾àÀëΪ
| qUT2 |
| 12md |
µãÆÀ£º±¾ÌâµÄÄѵãÔÚÓÚÁ£×ÓµÄÔ˶¯ÓмÓËÙÓмõËÙ£¬×¢ÒâÓ¦ÓÃÔ˶¯µÄ¶Ô³ÆÐÔÇóÎ»ÒÆ¿ÉÒÔ¼ò»¯ÔËË㣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿