题目内容
11.(1)金属球做匀速圆周运动的最小速度值是多大?
(2)如果绝缘细线的拉力等于小球的重力,则速度多大?
分析 (1)金属球在水平面内做匀速圆周运动,绳子拉力与库仑力的合力充当向心力,当绳子拉力为零时,速度最小,由牛顿第二定律可求得最小速度;
(2)由牛顿第二定律求解速度.
解答 解:(1)当向心力仅由库仑力提供时,金属球的速度最小,根据牛顿第二定律得:
$k\frac{{q}^{2}}{{l}^{2}}=m\frac{{v}^{2}}{l}$
解得:v=$\sqrt{\frac{k{q}^{2}}{ml}}$
(2)金属球在水平面内做匀速圆周运动,绳子拉力与库仑力的合力充当向心力,由牛顿第二定律得:
$k\frac{{q}^{2}}{{l}^{2}}+mg=m\frac{{v′}^{2}}{l}$
解得:v′=$\sqrt{\frac{k{q}^{2}+mg{l}^{2}}{ml}}$
答:(1)金属球做匀速圆周运动的最小速度值是$\sqrt{\frac{k{q}^{2}}{ml}}$;
(2)如果绝缘细线的拉力等于小球的重力,则速度为$\sqrt{\frac{k{q}^{2}+mg{l}^{2}}{ml}}$.
点评 本题考查了牛顿第二定律的直接应用,要求同学们知道向心力的来源,明确当绳子拉力为零时,速度最小,难度适中.
练习册系列答案
相关题目
19.
如图所示,圆盘上叠放着两个物块A和B.当圆盘和物块绕竖直轴匀速转动时,物块与圆盘始终保持相对静止,则( )
| A. | A物块不受摩擦力作用 | |
| B. | 物块B受5个力作用 | |
| C. | 当转速增大时,A受摩擦力增大,B所受摩擦力也增大 | |
| D. | A对B的摩擦力方向沿半径指向转轴 |
20.
如图所示,用细线吊着一个质量为m的小球,使小球在水平面内做圆锥摆运动,已知线与竖直方向的夹角为θ,线长为L,下列说法正确的是( )
| A. | 小球受重力、拉力、向心力 | B. | 小球向心加速度an=gcotθ | ||
| C. | 小球向心加速度an=gtanθ | D. | 以上说法都不正确 |
1.下列对物理学家的主要贡献的说法中正确的有( )
| A. | 奥斯特发现了电磁感应现象,打开了研究电磁学的大门 | |
| B. | 法拉第发现了磁生电的现象,从而为电气化的发展奠定了基础 | |
| C. | 安培发现了电流的磁效应,并总结了电流方向与磁场方向关系的右手螺旋定则 | |
| D. | 牛顿提出了分子电流假设,总结了一切磁场都是由运动电荷产生的 |