ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿Ò»¸öÎïÌå×öÔȱäËÙÖ±ÏßÔ˶¯£¬³õËÙ¶ÈΪv0£¬¼ÓËÙ¶ÈΪa£¬Ô˶¯Ê±¼äΪt£¬Ä©ËÙ¶ÈΪv£¬Î»ÒÆÎªx¡£ÇëÍê³ÉÏÂÁÐÎÊÌâ¡£
(1)¸ù¾Ý¼ÓËٶȵ͍Òåʽ£¬ÍƵ¼ÔȱäËÙÖ±ÏßÔ˶¯µÄv-t¹ØÏµ£ºv=v0+at
(2)¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄv-t¹ØÏµÒÔ¼°x-t¹ØÏµ£¬ÍƵ¼ÔȱäËÙÔ˶¯ËÙ¶È-Î»ÒÆ¹ØÏµÊ½£ºv2-v02=2ax
(3)ÎïÌåÔÚÒ»¶Îʱ¼äÄ򵀮½¾ùËÙ¶È
¶¨ÒåΪ£º
=
£¬ÆäÖУ¬tΪÔ˶¯µÄ×Üʱ¼ä£¬xΪÕâ¶Îʱ¼äÄÚµÄ×ÜÎ»ÒÆ¡£Èôv1±íʾÔȱäËÙÖ±ÏßÔ˶¯Öеãʱ¿Ì£¨¼´
£©µÄ˲ʱËÙ¶È¡£ÇëÖ¤Ã÷£¬ÎïÌå×öÔȱäËÙÖ±ÏßÔ˶¯Ê±£ºv1=
=![]()
¡¾´ð°¸¡¿£¨1£©¼û½âÎö£¨2£©¼û½âÎö£¨3£©¼û½âÎö
¡¾½âÎö¡¿
(1)ÓɼÓËٶȶ¨Òåʽa=
£¬Ëٶȱ仯Á¿
=v-v0£¬
=t
µÃ
a=![]()
ÕûÀíµÃ
v=v0+at
(2)ÓÉËٶȹ«Ê½v=v0+at£¬Î»Òƹ«Ê½x=v0t+
at2
Á½Ê½Ïûȥʱ¼äÕûÀíµÃ
v2-v02=2ax
(3)ÓÉËٶȹ«Ê½
=
=![]()
ËùÒÔ
=v1£¬ÒòΪv=v0+at£¬
ËùÒÔv1-v0=
at£¬
v-v1=
at
ËùÒÔ
2v1=v+v0
ÕûÀíµÃ
v1=
=![]()
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿