ÌâÄ¿ÄÚÈÝ
2£®£¨1£©ºã¶¨ÍâÁ¦µÄ´óС£»
£¨2£©Ïß¿ò½øÈë´Å³¡µÄ¹ý³ÌÖÐͨ¹ýÏß¿ò½ØÃæµÄµçÁ¿q£»
£¨3£©Õû¸ö¹ý³ÌÖвúÉúµÄ½¹¶úÈÈQ£®
·ÖÎö £¨1£©Ïß¿ò¼ÓËÙ¶ÈΪÁ㣬ÔòÏß¿òÊÜÁ¦Æ½ºâ£¬ÓÉÊÜÁ¦Æ½ºâÇóµÃºãÁ¦£»
£¨2£©¶Ôÿһ¼«¶Ìʱ¼ä¶ÎÇó³öµçÁ¿µÄ±í´ïʽ£¬È»ºó¶ÔÕû¸ö¹ý³Ìµþ¼Ó¼´¿É£»
£¨3£©·ÖÎöÏß¿òÊÜÁ¦¼°×ö¹¦Çé¿ö£¬È»ºóÀûÓö¯Äܶ¨ÀíÇó½â¼´¿É£®
½â´ð ½â£º£¨1£©cd±ß¸ÕÒª½ø´Å³¡Ê±Ïß¿òµÄ¼ÓËÙ¶ÈΪÁ㣬ÔòÏß¿òÊÜÁ¦Æ½ºâ£¬ËùÒÔ£¬$F=BIl=B•\frac{Bl{v}_{1}}{R+3R}l=\frac{{B}^{2}{l}^{2}{v}_{1}}{4R}$£»
£¨2£©Ïß¿ò½øÈë´Å³¡µÄ¹ý³ÌÖÐijһ¼«¶Ìʱ¼ä¡÷tͨ¹ýÏß¿ò½ØÃæµÄµçÁ¿$¡÷q=I•¡÷t=\frac{Blv}{4R}¡÷t$=$\frac{Bl}{4R}¡÷x$£»
ËùÒÔ£¬¶Ô¡÷qÔÚÕû¸ö½øÈë´Å³¡µÄ¹ý³Ì½øÐÐÀÛ¼Ó£¬ÔòÓÐ$q=\frac{B{l}^{2}}{4R}$£»
£¨3£©Õû¸ö¹ý³ÌÖ»ÓÐÍâÁ¦ºÍ°²ÅàÁ¦×ö¹¦£¬¶ÔÕû¸ö¹ý³ÌÓ¦Óö¯Äܶ¨Àí£¬Ôò°²ÅàÁ¦Ëù×öµÄ¹¦$W=Fl=\frac{{B}^{2}{l}^{3}{v}_{1}}{4R}$£»
ÓÖÓа²ÅàÁ¦×öµÄ¹¦µÈÓÚÏß¿ò²úÉúµÄÈÈÁ¿£¬¼´Õû¸ö¹ý³ÌÖвúÉúµÄ½¹¶úÈÈ$Q=W=\frac{{B}^{2}{l}^{3}{v}_{1}}{4R}$£»
´ð£º£¨1£©ºã¶¨ÍâÁ¦µÄ´óСΪ$\frac{{B}^{2}{l}^{2}{v}_{1}}{4R}$£»
£¨2£©Ïß¿ò½øÈë´Å³¡µÄ¹ý³ÌÖÐͨ¹ýÏß¿ò½ØÃæµÄµçÁ¿qΪ$\frac{B{l}^{2}}{4R}$£»
£¨3£©Õû¸ö¹ý³ÌÖвúÉúµÄ½¹¶úÈÈQΪ$\frac{{B}^{2}{l}^{3}{v}_{1}}{4R}$£®
µãÆÀ ÔÚÇó°²ÅàÁ¦×ö¹¦µÄÇé¿ö£¬ÓÉÓÚ°²ÅàÁ¦´óСÓëËÙ¶ÈÓйأ¬ÄÑÒÔÖ±½ÓÀûÓö¨ÒåʽÇó½â£¬Òò´ËÎÒÃÇͨ³£ÀûÓö¯Äܶ¨Àí£¬Í¨¹ýÇó½âÆäËûÁ¦×ö¹¦À´Çó½â°²ÅàÁ¦×ö¹¦£®
| A£® | µØÆ½ÃæÒÔϵÄÎïÌåÖØÁ¦ÊÆÄÜΪ¸ºÖµ | B£® | ÖÊÁ¿´óµÄÎïÌåÖØÁ¦ÊÆÄÜÒ»¶¨´ó | ||
| C£® | -5JµÄÊÆÄܱÈ-3JµÄÊÆÄÜ´ó | D£® | ÖØÁ¦ÊÆÄܵļõСµÈÓÚÖØÁ¦µÄ¹¦ |
| A£® | ͼ¼×ÖУ¬½«µØÃæÉÏÎïÌåµþ·ÅÔÚÒ»Æð£¬È˶ÔÎïÌå×öÁ˹¦ | |
| B£® | ͼÒÒÖУ¬ÔÚˮƽ·½ÏòÔÈËٰᶯһÅ軨£¬È˶ÔÕâÅ軨×öÁ˹¦ | |
| C£® | ͼ±ûÖУ¬Æ»¹ûÏÂÂä¹ý³ÌÖУ¬ÖØÁ¦¶ÔÆ»¹û×ö¸º¹¦ | |
| D£® | ͼ¶¡ÖУ¬´óÁ¦Ê¿±§×Å´óʯ²»¶¯´óÁ¦Ê¿¶Ô´óʯû×ö¹¦ |
| A£® | $\frac{{{£¨R+H£©}^{3}¦È^2}^{\;}}{{Gt^2}^{\;}}$ | B£® | $\frac{{{{¦Ð}^{2}£¨R+H£©^3}^{\;}¦È^2}^{\;}}{{Gt}^{2}}$ | ||
| C£® | $\frac{{{£¨R+H£©^3}^{\;}¦È^2}^{\;}}{{4¦ÐGt^2}^{\;}}$ | D£® | $\frac{{{{4¦Ð}^{2}£¨R+H£©^3}^{\;}¦È^2}^{\;}}{{Gt^2}^{\;}}$ |
| A£® | aµÄ¶¯ÄÜСÓÚbµÄ¶¯ÄÜ | |
| B£® | aµÄ¶¯ÄܵÈÓÚbµÄ¶¯ÄÜ | |
| C£® | Á½ÎïÌåËù×é³ÉµÄϵͳ»úеÄÜÔö¼Ó | |
| D£® | ÎïÌåa¿Ë·þÉþÀÁ¦×öµÄ¹¦µÈÓÚÎïÌåa»úеÄܵļõÉÙÁ¿ |