ÌâÄ¿ÄÚÈÝ
20£®Ä³Í¬Ñ§Ó÷ü°²·¨²âÒ»½Ú¸Éµç³ØµÄµç¶¯ÊƺÍÄÚ×裬ÏÖ±¸ÓÐÏÂÁÐÆ÷²Ä£ºA£®±»²â¸Éµç³ØÒ»½Ú
B£®µçÁ÷±í1£ºÁ¿³Ì0¡«0.6A£¬ÄÚ×èr=0.2¦¸
C£®µçÁ÷±í2£ºÁ¿³Ì0¡«0.6A£¬ÄÚ×èԼΪ0.1¦¸
D£®µçѹ±í1£ºÁ¿³Ì0¡«3V£¬ÄÚ×èδ֪
E£®µçѹ±í2£ºÁ¿³Ì0¡«15V£¬ÄÚ×èδ֪
F£®»¬¶¯±ä×èÆ÷1£º0¡«10¦¸£¬2A
G£®»¬¶¯±ä×èÆ÷2£º0¡«100¦¸£¬1A
H£®¿ª¹Ø¡¢µ¼ÏßÈô¸É
£¨1£©·ü°²·¨²âµç³Øµç¶¯ÊƺÍÄÚ×èµÄʵÑéÖУ¬ÓÉÓÚµçÁ÷±íºÍµçѹ±íÄÚ×èµÄÓ°Ï죬²âÁ¿½á¹û´æÔÚϵͳÎó²î£®ÔÚÏÖÓÐÆ÷²ÄµÄÌõ¼þÏ£¬Òª¾¡¿ÉÄÜ׼ȷµØ²âÁ¿µç³ØµÄµç¶¯ÊƺÍÄÚ×裮ÔÚÉÏÊöÆ÷²ÄÖÐÇëÑ¡ÔñÊʵ±µÄÆ÷²Ä£º
A¡¢B¡¢D¡¢F¡¢H£¨ÌîдѡÏîǰµÄ×Öĸ£©£»
£¨2£©ÊµÑéµç·ͼӦѡÔñÈçͼÖеļף¨Ìî¡°¼×¡±»ò¡°ÒÒ¡±£©£»
£¨3£©¸ù¾ÝʵÑéÖеçÁ÷±íºÍµçѹ±íµÄʾÊýµÃµ½ÁËÈçͼ±ûËùʾµÄU-IͼÏó£¬ÔòÔÚÐÞÕýÁËʵÑéϵͳÎó²îºó£¬¸Éµç³ØµÄµç¶¯ÊÆE=1.5V£¬ÄÚµç×èr=0.8¦¸£®
·ÖÎö £¨1£©ÊµÑéÖÐÒªÄܱ£Ö¤°²È«ºÍ׼ȷÐÔÑ¡Ôñµç±í£»
£¨2£©±¾ÊµÑéÓ¦²ÉÓõç×èÏäºÍµçѹ±íÁªºÏ²âÁ¿£¬ÓÉʵÑéÔÀíÑ¡Ôñµç·ͼ£»
£¨3£©ÓÉÔÀíÀûÓñպϵç·ŷķ¶¨Âɿɵóö±í´ïʽ£¬ÓÉÊýѧ¹ØÏµ¿ÉµÃ³öµç¶¯ÊƺÍÄÚµç×裮
½â´ð ½â£º£¨1£©ÔÚÉÏÊöÆ÷²ÄÖÐÇëÑ¡ÔñÊʵ±µÄÆ÷²Ä£ºA£®±»²â¸Éµç³ØÒ»½Ú
ΪÁ˶ÁÊý׼ȷ£¬ËùÒÔÑ¡ÔñB£®µçÁ÷±í£ºÁ¿³Ì0¡«0.6A£¬D£®µçѹ±í£ºÁ¿³Ì0¡«3V£¬
»¬¶¯±ä×èÆ÷×èÖµ½ÏСÓÐÀûÓÚµç±íµÄÊýÖµ±ä»¯£¬¼õСÎó²î£¬¹ÊÑ¡F£®»¬¶¯±ä×èÆ÷£¬H£®¿ª¹Ø¡¢µ¼ÏßÈô¸É
£¨2£©ÒòµçÁ÷±íBµÄÄÚ×èÒÑÖª£¬¹Ê¿ÉÒÔ½«µçÁ÷±íÄÚ×èµÈЧΪµçÔ´ÄÚ×裬Çó³öµÈЧµç×èºó£¬ÔÙÇó³öʵ¼ÊµçÔ´µç×裬¹Ê²ÉÓü×ͼ¿ÉÒÔÓÐЧÐÞÕýʵÑéÎó²î£»
£¨3£©ÓÉU-Iͼ¿ÉÖª£¬µçÔ´µÄµç¶¯ÊÆE=1.5V£»
µÈЧÄÚµç×èr=$\frac{1.5-1.0}{0.5}$=1.0¦¸£»
¹Êʵ¼ÊÄÚ×èΪ1.0-0.2=0.8¦¸£»
¹Ê´ð°¸Îª£º£¨1£©BDF£»£¨2£©¼×£»£¨3£©1.5£»0.8
µãÆÀ ±¾ÌâΪÉè¼ÆÐÔʵÑ飬ÔÚ½âÌâʱӦעÒâÃ÷ȷʵÑéµÄÔÀí£»²¢ÇÒÒªÓÉʵÑéÔÀí½áºÏ±ÕºÏµç·ŷķ¶¨Âɵóö±í´ïʽ£¬ÓÉͼÏóµÃ³öµç¶¯ÊƺÍÄÚµç×裮
| A£® | ÍË¿±àÖ¯µÄÒ·þ²»Ò×±»ÀÆÆ£¬ËùÒÔÓÃÍË¿±àÖ¯ | |
| B£® | ÍË¿±ØÐë´ïµ½Ò»¶¨µÄºñ¶È£¬²ÅÄܶÔÈËÌåÆðµ½±£»¤×÷Óà | |
| C£® | µç¹¤±»ÍË¿±àÖ¯µÄÒ·þËù°ü¹ü£¬Ê¹ÌåÄÚµçÊÆ±£³ÖΪÁ㣬¶ÔÈËÌåÆð±£»¤×÷Óà | |
| D£® | µç¹¤±»ÍË¿±àÖ¯µÄÒ·þËù°ü¹ü£¬Ê¹ÌåÄڵ糡ǿ¶È±£³ÖΪÁ㣬¶ÔÈËÌåÆð±£»¤×÷Óà |
| A£® | ¼×¡¢ÒÒÁ½°ÚµÄÖÜÆÚÏàµÈ | B£® | ¼×¡¢ÒÒÁ½°ÚµÄÕñ·ùÏàµÈ | ||
| C£® | ¼×µÄ»úеÄÜСÓÚÒҵĻúеÄÜ | D£® | ¼×µÄ×î´óËÙ¶ÈСÓÚÒÒµÄ×î´óËÙ¶È |
| A£® | ÈôÖ»Ôö´ó½»Á÷µçµÄƵÂÊ£¬Èý¸öµçÁ÷±í¶ÁÊý¶¼Ôö´ó | |
| B£® | ÈôÖ»Ôö´ó½»Á÷µçµÄµçѹ£¬Èý¸öµçÁ÷±íµÄ¶ÁÊý¶¼Ôö´ó | |
| C£® | Èô½«½»Á÷µçÔ´¸Ä³ÉÓÐЧֵÏàͬµÄÖ±Á÷µçÔ´£¬Èý¸öµçÁ÷±íµÄ¶ÁÊý²»±ä | |
| D£® | Èô½«½»Á÷µçÔ´¸Ä³ÉÓÐЧֵÏàͬµÄÖ±Á÷µçÔ´£¬I1¡¢I2²»±ä£¬I3=0 |
| A£® | $\sqrt{{v}_{0}^{2}+\frac{1}{2}£¨{a}_{1}+{a}_{2}£©{x}_{0}}$ | B£® | $\sqrt{{v}_{0}^{2}+2£¨{a}_{1}+{a}_{2}£©{x}_{0}}$ | ||
| C£® | $\sqrt{{v}_{0}^{2}+£¨{a}_{1}+{a}_{2}£©{x}_{0}}$ | D£® | $\sqrt{2{v}_{0}^{2}+2£¨{a}_{1}+{a}_{2}£©{x}_{0}}$ |
| A£® | $\frac{£¨Eq-ma£©dg}{a£¨Eq-mgd£©}$ | B£® | $\frac{[qE-m£¨g-a£©d]g}{£¨g-a£©£¨qE-mgd£©}$ | ||
| C£® | $\frac{m£¨g-a£©dg}{£¨Eq-mgd£©}$ | D£® | $\frac{mgdg}{£¨g-a£©£¨Eq-mgd£©}$ |