题目内容
4.在某星球上以速度v0竖直上抛一物体,经过时间t,物体落回抛出点.如将物体沿该星球赤道切线方向抛出,要使物体不再落回星球表面,抛出的初速至少应为多少?(已知星球半径为R,不考虑星球自转)分析 以初速度v0竖直上抛一物体,物体在重力作用下做匀减速直线运动,根据匀变速直线运动的速度时间关系公式可以求出该星球表面的重力加速度.
为了使沿星球表面抛出的物体不再落回星球表面,卫星将绕星球表面做匀速圆周运动,重力提供万有引力,据此列式可得卫星运行的线速度.
解答 解:物体抛出后,在星球表面上做竖直上抛运动.
设星球对物体产生的“重力加速度”为g,则 v0=g×$\frac{t}{2}$---------①
设抛出时的速度至少为v,
物体抛出后不再落回星球表面,根据牛顿第二定律有 mg=m$\frac{{v}^{2}}{R}$--②
由①②得v=$\sqrt{\frac{2R{v}_{0}}{t}}$
答:抛出时的速度至少为$\sqrt{\frac{2R{v}_{0}}{t}}$.
点评 认清竖直上抛运动的本质,根据匀减速直线运动规律求出物体的重力加速度.卫星运行的速度根据重力提供圆周运动的向心力列式求解即可.
练习册系列答案
相关题目
14.下列关于惯性的说法正确的是( )
| A. | 运动越快的汽车越不容易停下来,说明其惯性越大 | |
| B. | 物体匀速运动时存在惯性,变速运动时不存在惯性 | |
| C. | 同一物体,放在赤道与放在两极时的惯性一样大 | |
| D. | 物体受力时,才表现出惯性 |
19.
如图所示,轻绳长为L一端系一小球,另一端固定于O点,在O点正下方的P点钉一颗钉子,OP=$\frac{L}{2}$,使悬线拉紧与竖直方向成一角度θ,然后由静止释放小球,当悬线碰到钉子时不变的是( )
| A. | 小球的瞬时速度 | B. | 小球的加速度 | ||
| C. | 小球的所受的向心力 | D. | 悬线所受的拉力 |
9.
如图,竖直轻质悬线上端固定,下端与均质硬棒AB中点连接,棒长为线长的两倍.棒的A端用铰链墙上,棒处于水平状态.改变悬线的长度,使线与棒的连接点逐渐右移,并保持棒仍处于水平状态.(若一个物体受三个力而处于平衡状态,那么这三个力一定是共点力)则悬线拉力( )
| A. | 逐渐减小 | B. | 逐渐增大 | C. | 先减小后增大 | D. | 先增大后减小 |
13.
如图所示,在垂直纸面向内的匀强磁场内放一光滑、绝缘的桌子,从桌面上A点沿水平方向以初速v0向右射出带有正电荷的小球.落于水平地板上,费时t1s,落地点距A点的水平距离s1m,撤去磁场后,小球仍从A点向右以初速为v0射出时,相应量为t2,s2,则( )
| A. | s1>s2 | B. | t1>t2 | ||
| C. | 两次落地的速度相同 | D. | 因条件不够,无法比较 |
8.下列几个物理过程中,机械能一定守恒的是(不计空气阻力)( )
| A. | 物体沿光滑曲面自由下落的过程 | |
| B. | 某同学荡秋千,越来越高 | |
| C. | 抛出的篮球在空中运动的过程 | |
| D. | 在拉力作用下,物体沿斜面匀速上滑的过程 |