ÌâÄ¿ÄÚÈÝ
18£®£¨1£©±ùºøµÄ³õËÙ¶È´óСºÍ±ùµÀµÄ×ܳ¤¶È£»
£¨2£©Òì³£±ùÃæµÄ³¤¶È£®
·ÖÎö £¨1£©ÔÚÕý³£±ùÃæÉϸù¾Ý¶¯Äܶ¨Àí¼°¶¯Á¿¶¨ÀíÁÐʽ£¬ÁªÁ¢·½³Ì¼´¿ÉÇó½â£»
£¨2£©²»¹æÔò±ùÃæ´æÔÚʱ¸ù¾Ý¶¯Äܶ¨ÀíÁÐʽ¼´¿ÉÇó½â£»
½â´ð ½â£ºÉè±ùºø³õËÙ¶ÈΪv£¬ÈüµÀ×ܳ¤¶ÈΪL£¬²»¹æÔò±ùÃæµÄ³¤¶ÈΪd£¬
£¨1£©ÔÚÕý³£±ùÃæÉÏ£º¦ÌmgL=$\frac{1}{2}$mv2-$\frac{1}{2}$m£¨0.9v£©2
v-0.9v=¦Ìgt
v=10¦Ìgt
L=$\frac{19}{2}$¦Ìgt2
£¨2£©²»¹æÔò±ùÃæ´æÔÚʱ£º¦Ìmg£¨L-d£©+2¦Ìmgd=$\frac{1}{2}$mv2-$\frac{1}{2}$m£¨0.8v£©2
½âµÃ£ºd=$\frac{17}{2}$¦Ìgt2
´ð£º£¨1£©±ùºøµÄ³õËÙ¶È´óСΪ10¦Ìgt£¬±ùµÀµÄ×ܳ¤¶ÈΪ$\frac{19}{2}$¦Ìgt2£»
£¨2£©Òì³£±ùÃæµÄ³¤¶ÈΪ$\frac{17}{2}$¦Ìgt2
µãÆÀ ±¾Ìâ×¢Ò⿼²éÁ˶¯Äܶ¨Àí¡¢¶¯Á¿Êغ㶨Âɼ°Ô˶¯Ñ§»ù±¾¹«Ê½µÄÖ±½ÓÓ¦Óã¬ÒªÇóͬѧÄÜÕýÈ··ÖÎö±ùºøµÄÔ˶¯Çé¿ö£¬ÖªµÀµ±Òì³£±ùÃæÔÚ×îÇ°ÃæÊ±£¨¼õËÙ¹ý³ÌµÄ¼ÓËÙ¶ÈÏÈ´óºóС£©£¬ºÄʱ×£¬µ±Òì³£±ùÃæÔÚ×îºóÃæÊ±£¨¼õËÙ¹ý³ÌµÄ¼ÓËÙ¶ÈÏÈСºó´ó£©£¬ºÄʱ×î¶Ì£¬ÄѶȽϴó£®
| A£® | µçÁ÷±íA1¶ÁÊýÏȱäСºó±ä´ó£¬µçÁ÷±íA2¶ÁÊýÒ»Ö±±ä´ó | |
| B£® | µçÔ´µÄÊä³ö¹¦ÂÊÏÈÔö´óºó¼õС | |
| C£® | µçѹ±íV1ʾÊýÓëµçÁ÷±íA1ʾÊýµÄ±ÈÖµ²»±ä | |
| D£® | µçѹ±íV2ʾÊýµÄ±ä»¯Á¿ÓëµçÁ÷±íA1ʾÊýµÄ±ä»¯Á¿µÄ±ÈÖµ±£³Ö²»±ä |
| A£® | ΢²¨ÒËÓõز¨´«²¥ | |
| B£® | ÎÞÏßµçѡ̨µÄ¹ý³Ì¾ÍÊǵ÷ÖÆ | |
| C£® | Ôڹ㲥µçÊÓÖУ¬ÉùÒôºÍͼÏóÐźſÉÒÔÀûÓõç´Å²¨´«µÝ | |
| D£® | Õæ¿ÕÖеç´Å²¨µÄ´«²¥ËٶȶԲ»Í¬¹ßÐԲο¼ÏµÊDz»Í¬µÄ |
| A£® | $\frac{{B}^{2}{R}^{2}q}{2md}$ | B£® | $\frac{3{B}^{2}{R}^{2}q}{2md}$ | C£® | $\frac{3{B}^{2}{R}^{2}q}{md}$ | D£® | $\frac{\sqrt{3}{B}^{2}{R}^{2}q}{2md}$ |
| A£® | $\frac{1}{8}$mgR | B£® | $\frac{1}{4}$mgR | C£® | $\frac{3}{4}$mgR | D£® | $\frac{1}{2}$mgR |