ÌâÄ¿ÄÚÈÝ
5£®£¨1£©µÚ¢òÏóÏÞÄÚËù¼Óµç³¡Ç¿¶ÈE
£¨2£©Á£×ÓÔڵ糡ºÍ´Å³¡ÖÐÔ˶¯µÄʱ¼äÖ®±È$\frac{t_1}{t_2}$=£¿
£¨3£©Àë×Ó½øÈë´Å³¡Bºó£¬Ä³Ê±¿ÌÔÙ¼ÓÒ»¸öͬ·½ÏòµÄÔÈÇ¿´Å³¡B1£¬Ê¹´øµçÁ£×Ó×öÍêÕûµÄÔ²ÖÜÔ˶¯£¬ÇóËù¼Ó´Å³¡´Å¸ÐӦǿ¶ÈB1µÄ×îСֵ£®
·ÖÎö £¨1£©Á£×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬¸ù¾ÝÀàÆ½Å×Ô˶¯¹æÂÉÁгöˮƽ·½ÏòÓëÊúÖ±·½ÏòµÄÔ˶¯·½³Ì£¬È»ºó½áºÏÁ£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄÌØµã¼´¿ÉÇó³ö£»
£¨2£©Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬Ð´³öÆäÖÜÆÚ¹«Ê½£¬È»ºó½áºÏ$\frac{t}{T}=\frac{¦È}{2¦Ð}$Çó³öÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼ä£¬×îºóÇó³öÁ£×ÓÔڵ糡ºÍ´Å³¡ÖÐÔ˶¯µÄʱ¼äÖ®±È£»
£¨3£©Á£×Ó½øÈë´Å³¡£¬Á£×ӹ켣ǡºÃÓë´Å³¡Ï±߽çÏàÇÐΪÁÙ½çÇé¿ö£¬Óɼ¸ºÎ¹ØÏµµÃµ½°ë¾¶£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵõ½B1µÄ×îСֵ£®
½â´ð ½â£º£¨1£©´øµçÁ£×ÓÔڵ糡ÖÐ×öÀàËÆÆ½Å×Ô˶¯µÄʱ¼ä£º${t_1}=\frac{L}{v_0}$¡¢Ù
ÑØyÖá·½ÏòÓУº$\frac{{\sqrt{3}}}{2}L=\frac{1}{2}\frac{qE}{m}t_1^2$¡¢Ú
´øµçÁ£×Óµ½´ïOµãʱ£¬${v_y}=a{t_1}=\sqrt{3}{v_0}$
ËùÒÔv·½ÏòÓëxÖáÕý·½ÏòµÄ¼Ð½Ç¦Á=60¡ã
ËùÒÔ£ºv=2v0 ¡¢Û
´øµçÁ£×Ó½øÈë´Å³¡ºó×öÔÈËÙÔ²ÖÜÔ˶¯
ÓÉ $qvB=\frac{m{v}^{2}}{r}$
µÃ£º$r=\frac{mv}{qB}$¡¢Ü
Óɼ¸ºÎ¹ØÏµµÃ£º$r=\frac{{\sqrt{3}}}{3}L$¡¢Ý
ÓÉÒÔÉÏ¿Éʽ¿ÉÇóµÃ£ºE=Bv0
£¨2£©Ôڴų¡ÖеÄʱ¼ä ${t_2}=\frac{1}{3}T=\frac{2¦Ðm}{3Bq}=\frac{2¦Ðr}{3v}=\frac{{\sqrt{3}¦ÐL}}{{9{v_0}}}$
$\frac{t_1}{t_2}$=$\frac{{3\sqrt{3}}}{¦Ð}$
£¨3£©ÓÉ$Bq¦Ô=\frac{{m{¦Ô^2}}}{r}$Öª£¬BԽС£¬rÔ½´ó£®Éè´øµçÁÏ×ÓÔڴų¡ÖÐ×î´ó°ë¾¶ÎªR![]()
Óɼ¸ºÎ¹ØÏµµÃ£º$R=\frac{1}{4}r$
ÓÉÅ£¶ÙÔ˶¯¶¨Âɵãº$£¨B+{B_1}£©q¦Ô=\frac{{m{¦Ô^2}}}{R}$
´Å¸ÐӦǿ¶ÈB1µÄ×îСֵΪ£ºB1=3B
´ð£º£¨1£©µÚ¢òÏóÏÞÄÚËù¼Óµç³¡Ç¿¶ÈBv0£»
£¨2£©Á£×ÓÔڵ糡ºÍ´Å³¡ÖÐÔ˶¯µÄʱ¼äÖ®±ÈÊÇ$\frac{3\sqrt{3}}{¦Ð}$£»
£¨3£©Ëù¼Ó´Å³¡´Å¸ÐӦǿ¶ÈB1µÄ×îСֵÊÇ3B£®
µãÆÀ ´øµçÁ£×ÓÔÚ×éºÏ³¡ÖеÄÔ˶¯ÎÊÌ⣬Ê×ÏÈÒªÔËÓö¯Á¦Ñ§·½·¨·ÖÎöÇå³þÁ£×ÓµÄÔ˶¯Çé¿ö£¬ÔÙÑ¡ÔñºÏÊÊ·½·¨´¦Àí£®¶ÔÓÚÔȱäËÙÇúÏßÔ˶¯£¬³£³£ÔËÓÃÔ˶¯µÄ·Ö½â·¨£¬½«Æä·Ö½âΪÁ½¸öÖ±Ïߵĺϳɣ¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½½áºÏÇó½â£»¶ÔÓڴų¡ÖÐÔ²ÖÜÔ˶¯£¬ÒªÕýÈ·»³ö¹ì¼££¬Óɼ¸ºÎ֪ʶÇó½â°ë¾¶£®
| A£® | Ù¤ÀûÂÔͨ¹ý¹Û²ì·¢ÏÖÁ¦ÊÇά³ÖÔ˶¯µÄÔÒò | |
| B£® | ¿¨ÎĵÏÐíÓÃŤ³ÆÊµÑé²â³öÁËÍòÓÐÒýÁ¦³£Á¿ | |
| C£® | °²Åàͨ¹ýÓ͵ÎʵÑé²â¶¨ÁËÔªµçºÉµÄÊýÖµ | |
| D£® | °ÂË¹ÌØÍ¨¹ýʵÑé·¢ÏÖÁ˵ãµçºÉÏ໥×÷Óõ͍Á¿¹ØÏµ |
| A£® | BÇò´Ó¿ªÊ¼Ô˶¯ÖÁµ½´ïÔ²»·×îµÍµãµÄ¹ý³ÌÖУ¬¸Ë¶ÔBÇòËù×öµÄ×ܹ¦ÎªÁã | |
| B£® | AÇòÔ˶¯µ½Ô²»·µÄ×îµÍµãʱ£¬ËÙ¶ÈΪÁã | |
| C£® | ÔÚA¡¢BÔ˶¯µÄ¹ý³ÌÖУ¬A¡¢B×é³ÉµÄϵͳ»úеÄÜÊØºã | |
| D£® | BÇò¿ÉÒÔÔ˶¯µ½Ô²»·µÄ×î¸ßµã |
| A£® | IÎïÌåËùÊܵĺÏÍâÁ¦²»¶ÏÔö´ó£¬IIÎïÌåËùÊܵĺÏÍâÁ¦²»¶Ï¼õС | |
| B£® | ÔÚµÚÒ»´ÎÏàÓö֮ǰ£¬t1ʱ¿ÌÁ½ÎïÌåÏà¾à×îÔ¶ | |
| C£® | I¡¢IIÁ½¸öÎïÌåÔÚt2ʱ¿Ì¸ÕºÃÏàÓö | |
| D£® | I¡¢IIÁ½¸öÎïÌåµÄƽ¾ùËÙ¶È´óС¶¼ÊÇ$\frac{{v}_{1}+{v}_{2}}{2}$ |
| A£® | AµÆ±äÁÁ | B£® | BµÆ±äÁÁ | C£® | CµÆ±äÁÁ | D£® | ÈýµÆ¾ù±ä°µ |
| A£® | 0¡«5 sÄÚiµÄ×î´óֵΪ0.1 A | B£® | µÚ4 sÄ©iµÄ·½ÏòΪ¸º·½Ïò | ||
| C£® | µÚ3 sÄÚÏßȦµÄ·¢Èȹ¦ÂÊ×î´ó | D£® | 3¡«5 sÄÚÏßȦÓÐÀ©ÕŵÄÇ÷ÊÆ |
| A£® | ¼ÓËÙ¶ÈÔÚÊýÖµÉϵÈÓÚµ¥Î»Ê±¼äÄÚËٶȵı仯Á¿ | |
| B£® | ÎïÌåµÄËÙ¶ÈΪÁãʱ£¬¼ÓËÙ¶ÈÒ²Ò»¶¨ÎªÁã | |
| C£® | ÎïÌåµÄËٶȱ仯Á¿Ô½´ó£¬¼ÓËÙ¶ÈÒ»¶¨Ô½´ó | |
| D£® | ÎïÌåµÄËٶȱ仯Խ¿ì£¬¼ÓËÙ¶ÈÔ½´ó |