题目内容

9.质量为m的小球用长为L的悬线固定在O点,在O点正下方$\frac{1}{2}$L处有一光滑圆钉C(如图所示).今把小球拉到悬线水平后无初速度释放,当悬线呈竖直状态且与光滑圆钉C相碰的瞬时(  )
A.小球的速度不变B.小球的向心加速度突然减小
C.悬线的拉力突然减小D.小球的角速度突然增大

分析 小球碰到钉子后仍做圆周运动,线速度不变,由v=ωR分析角速度如何变化.由向心加速度公式an=$\frac{{v}^{2}}{R}$分析向心加速度的变化.对小球受力分析,可得悬线的拉力变化,继而可知各选项的正误.

解答 解:A、当悬线在竖直状态与钉相碰时根据能量守恒可知,小球速度不变,故A正确;
B、当悬线在竖直状态与钉相碰时根据能量守恒可知,小球速度不变,但圆周运动的半径减小,向心加速度an=$\frac{{v}^{2}}{R}$变大,故B错误;
C、此时小球的合力提供向心力,根据牛顿第二定律,有:F-mg=m$\frac{{v}^{2}}{R}$,故绳子的拉力:F=mg+m$\frac{{v}^{2}}{R}$,因R变小,故有钉子时,绳子上的拉力变大,故C错误;
D、当悬线在竖直状态与钉相碰时小球的线速度不变,但圆周运动的半径减小,由v=ωR分析得知,角速度突然增大,故D正确.
故选:AD.

点评 本题关键要抓住细绳碰到钉子前后转动半径的变化,同时要熟记圆周运动的规律以及向心力的各个表达式,同时注意牛顿第二定律的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网