题目内容
【答案】分析:当两棒匀速向上运动时,以两棒组成的系统为研究对象,拉力F等于重力和安培力之和;由于是两根同时切割磁感线,因此要弄清两根中的电流方向从而求出回路中的电动势.
解答:解 设杆向上运动的速度为v,则此时回路中的电动势为:E=B(l2-l1)v ①
根据法拉第电磁感应定律,回路中的电流:
②
根据右手定则电流沿顺时针方向,则x1y1受到向上的安培力:F1=BIl1,金属杆x2y2受到向下的安培力:F2=BIl2,
当杆匀速运动时,根据牛顿第二定律得:F+F1=(m1+m2)g+F2 ③
联立①②③得:
,
所以作用于两杆的重力的功率为:
回路电阻上的热功率为:
点评:这是一道电磁感应中的综合题,对于这类题目要弄清回路中的电流方向和安培力的方向,然后根据平衡或牛顿第二定律求解.
解答:解 设杆向上运动的速度为v,则此时回路中的电动势为:E=B(l2-l1)v ①
根据法拉第电磁感应定律,回路中的电流:
根据右手定则电流沿顺时针方向,则x1y1受到向上的安培力:F1=BIl1,金属杆x2y2受到向下的安培力:F2=BIl2,
当杆匀速运动时,根据牛顿第二定律得:F+F1=(m1+m2)g+F2 ③
联立①②③得:
所以作用于两杆的重力的功率为:
回路电阻上的热功率为:
点评:这是一道电磁感应中的综合题,对于这类题目要弄清回路中的电流方向和安培力的方向,然后根据平衡或牛顿第二定律求解.
练习册系列答案
相关题目