ÌâÄ¿ÄÚÈÝ
15£®¢ÙW¡Øv£»¢ÚW¡Øv2£»¢ÛW¡Ø$\sqrt{v}$£®
ΪÁËÑéÖ¤²ÂÏ룬ËûÃÇÉè¼ÆÁËÈçͼ¼×ËùʾµÄʵÑé×°Öã®PQΪһ¿éÇãб·ÅÖõÄľ°å£¬ÔÚQ´¦¹Ì¶¨Ò»¸öËÙ¶È´«¸ÐÆ÷£¨ÓÃÀ´²âÁ¿ÎïÌåÿ´Îͨ¹ýQµãµÄËÙ¶È£©£®ÔÚ¸Õ¿ªÊ¼ÊµÑéʱ£¬Ð¡¸ÕͬѧÌá³ö¡°²»ÐèÒª²â³öÎïÌåÖÊÁ¿£¬Ö»Òª²â³öÎïÌå³õʼλÖõ½ËÙ¶È´«¸ÐÆ÷µÄ¾àÀëLºÍ¶Á³öËÙ¶È´«¸ÐÆ÷µÄ¶ÁÊýv¾ÍÐÐÁË¡±£¬´ó¼Ò¾¹ýÌÖÂÛ²ÉÄÉÁËС¸ÕµÄ½¨Ò飮
£¨1£©ÇëÄã˵Ã÷С¸Õ½¨ÒéµÄÀíÓÉ£º¸ù¾Ý¶¯Äܶ¨ÀíÁгö·½³Ìʽ£¬¿ÉÒÔ¼ò»¯Ô¼È¥ÖÊÁ¿m£»
£¨2£©ÈÃÎïÌå·Ö±ð´Ó²»Í¬¸ß¶ÈÎÞ³õËÙÊÍ·Å£¬²â³öÎïÌå³õʼλÖõ½ËÙ¶È´«¸ÐÆ÷µÄ¾àÀëL1¡¢L2¡¢L3¡¢L4¡£¬¶Á³öÎïÌåÿ´Îͨ¹ýQµãµÄËÙ¶Èv1¡¢v2¡¢v3¡¢v4¡¢¡£¬²¢»æÖÆÁËÈçͼÒÒËùʾµÄL-vͼÏó£®ÈôΪÁ˸üÖ±¹ÛµØ¿´³öLºÍvµÄ±ä»¯¹ØÏµ£¬ËûÃÇÏÂÒ»²½Ó¦¸Ã×÷³öA£»
A£®L-v2ͼÏó B£®L-$\sqrt{v}$ͼÏó C£®L-$\frac{1}{v}$ͼÏó D£®L-$\frac{1}{{\sqrt{v}}}$ͼÏó
£¨3£©ÊµÑéÖУ¬Ä¾°åÓëÎïÌå¼äĦ²ÁÁ¦²»»á£¨¡°»á¡±»ò¡°²»»á¡±£©Ó°Ïì̽¾¿µÄ½á¹û£®
·ÖÎö ͨ¹ýʵÑéÀ´Ì½¾¿¡°ºÏÍâÁ¦×ö¹¦ºÍÎïÌåËٶȱ仯µÄ¹ØÏµ¡±£®Ã¿´ÎʵÑéÎïÌå´Ó²»Í¬³õλÖô¦¾²Ö¹ÊÍ·Å£¬Á¿³ö³õλÖõ½ËÙ¶È´«¸ÐÆ÷µÄÎ»ÒÆ¡¢¶Á³öÎïÌåµ½´«¸ÐÆ÷λÖõÄËÙ¶È£®¸ù¾ÝʵÑéÊý¾ÝÁгöÊý¾Ý±í²¢Ãèµã×÷³öͼÏ󣬴ӶøÕÒµ½Î»ÒÆÓëËٶȱ仯µÄ¹ØÏµ£¬ÔÚÔ˶¯¹ý³ÌÖУ¬ÓÉÓÚÎïÌåÊÜÁ¦ÊǺ㶨µÄ£¬ËùÒԵóöºÏÍâÁ¦×ö¹¦ÓëÎïÌåËٶȱ仯µÄ¹ØÏµ£®Òò´ËÔÚʵÑéÖÐÎïÌåÓëľ°å¼äµÄĦ²ÁÁ¦²»»áÓ°Ïì̽¾¿µÄ½á¹û£®
½â´ð ½â£º£¨1£©ÈôÖ»ÓÐÖØÁ¦×ö¹¦£¬Ôò£ºmgmgLsin=$\frac{1}{2}m{v}^{2}$£¬µÈºÅµÄÁ½±ß¶¼ÓÐm£¬¿ÉÒÔÔ¼µô£¬¹Ê²»ÐèÒª²â³öÎïÌåµÄÖÊÁ¿£®ÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉÇó½â£¬Ò²ÄܵóöÏàͬµÄ½áÂÛ£®
ÈôÊÇÖØÁ¦ºÍĦ²ÁÁ¦×ö¹¦£¬Ôò£º$£¨mgsin¦È-¦Ìmgcos¦È£©L=\frac{1}{2}m{v}^{2}$£¬µÈºÅµÄÁ½±ß¶¼ÓÐm£¬¿ÉÒÔÔ¼µô£¬¹Ê²»ÐèÒª²â³öÎïÌåµÄÖÊÁ¿£®ÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉÇó½â£¬Ò²ÄܵóöÏàͬµÄ½áÂÛ£®
£¨2£©²ÉÓñí¸ñ·½·¨¼Ç¼Êý¾Ý£¬ºÏÀí»æÖÆµÄL-vͼÏóÊÇÇúÏߣ¬²»Äܵóö½áÂÛW¡Øv2£®ÎªÁ˸üÖ±¹ÛµØ¿´³öLºÍvµÄ±ä»¯¹ØÏµ£¬Ó¦¸Ã»æÖÆL-v2ͼÏó£®
¹ÊÑ¡£ºA
£¨3£©ÖØÁ¦ºÍĦ²ÁÁ¦µÄ×ܹ¦WÒ²Óë¾àÀëL³ÉÕý±È£¬Òò´Ë²»»áÓ°Ïì̽¾¿µÄ½á¹û£®
¹Ê´ð°¸Îª£º£¨1£©¸ù¾Ý¶¯Äܶ¨ÀíÁгö·½³Ìʽ£¬¿ÉÒÔ¼ò»¯Ô¼È¥ÖÊÁ¿m£»£¨2£©A£»£¨3£©²»»á£®
µãÆÀ ͨ¹ýʵÑéÊý¾ÝÁÐ±í¡¢Ãèµã¡¢×÷ͼ´Ó¶øÌ½¾¿³öÎÊÌâµÄ½áÂÛ£®ÖµµÃ×¢ÒâµÄÊÇ£ºÓÉÓÚºÏÍâÁ¦ºã¶¨£¬Òò´ËºÏÍâÁ¦×öµÄ¹¦Óë·¢ÉúµÄÎ»ÒÆÊdzÉÕý±È£®¹Ê¿ÉÏÈ̽¾¿Î»ÒÆÓëËٶȱ仯ÓкιØÏµ£®
| A£® | µç¼üS±ÕºÏ˲¼ä£¬A¡¢Bͬʱ·¢¹â£¬ËæºóAµÆÏ¨Ãð£¬BµÆ±äÁÁ | |
| B£® | µç¼üS±ÕºÏ˲¼ä£¬BµÆÁÁ£¬AµÆ²»ÁÁ | |
| C£® | ¶Ï¿ªµç¼üSµÄ˲¼ä£¬A¡¢BµÆÍ¬Ê±Ï¨Ãð | |
| D£® | ¶Ï¿ªµç¼üSµÄ˲¼ä£¬BµÆÁ¢¼´Ï¨Ãð£¬AµÆÍ»È»ÉÁÁÁÒ»ÏÂÔÙϨÃð |
| A£® | gt0£¨cos¦È1-cos¦È2£© | B£® | $\frac{{g{t_0}}}{{cos{¦È_1}-cos{¦È_2}}}$ | ||
| C£® | gt0£¨tan¦È1-tan¦È2£© | D£® | $\frac{{g{t_0}}}{{tan{¦È_1}-tan{¦È_2}}}$ |
| A£® | $\frac{1}{2}$F | B£® | $\frac{1}{8}$F | C£® | $\frac{7}{8}$F | D£® | $\frac{1}{4}$F |
| A£® | $\frac{x}{2t}$ | B£® | $\frac{2x}{3t}$ | C£® | $\frac{3x}{2t}$ | D£® | $\frac{2x}{t}$ |