ÌâÄ¿ÄÚÈÝ
10£®£¨1£©ÇóÎï¿éÓëˮƽµØÃæÖ®¼äµÄ¶¯Ä¦²ÁÒòÊý¦Ì£»
£¨2£©Çó³·µôF1ÒÔºó£¬Îï¿éÏòÓÒÔ˶¯ËٶȱäΪÁãµÄʱ¼ä£¿
£¨3£©Çó³·µôF1ÒÔºó£¬Îï¿éÔÚ6SÄ©¾à³õʼλÖõľàÀ룿
·ÖÎö £¨1£©Îï¿é×öÔÈËÙÔ˶¯£¬¸ù¾Ý¹²µãÁ¦µÄƽºâÌõ¼þºÍĦ²ÁÁ¦µÄ¼ÆË㹫ʽÇó½â¶¯Ä¦²ÁÒòÊý£»
£¨2£©¸ù¾ÝÅ£¶ÙÔ˶¯¶¨ÂÉÇó½â³·µôF1ºó¼õËÙÔ˶¯µÄ¼ÓËٶȺͼõËÙÔ˶¯Ê±¼ä£»
£¨3£©ÏÈÓÉÔ˶¯Ñ§µÄ¹«Ê½Çó³ö¼õËÙµÄÎ»ÒÆ£»ÔÙÇó³öÏò×ó¼ÓËÙÔ˶¯µÄÎ»ÒÆ£¬È»ºóÇó½âÎï¿éÔÚ6SÄ©¾à³õʼλÖõľàÀ룮
½â´ð ½â£º£¨1£©Îï¿é×öÔÈËÙÔ˶¯£¬¸ù¾Ý¹²µãÁ¦µÄƽºâÌõ¼þ¿ÉµÃ£ºf+F2=F1cos¦Á£¬
Ħ²ÁÁ¦Îª£ºf=¦Ì£¨mg-F1sin¦Á£©£¬
ÁªÁ¢µÃ£º¦Ì=0.5£»
£¨2£©³·µôF1ºó¼õËÙÔ˶¯µÄ¼ÓËÙ¶ÈΪ£º${a}_{1}=\frac{{F}_{2}+¦Ìmg}{m}=\frac{30+25}{5}m/{s}^{2}=11m/{s}^{2}$
Éè¾¹ýt1ÏòÓÒÔ˶¯ËٶȱäΪ0£¬ÓУº${t}_{1}=\frac{{v}_{0}}{{a}_{1}}=\frac{11}{11}s=1s$£¬
£¨3£©´ËʱÏòÓÒÎ»ÒÆ£¬ÓУº${x}_{1}=\frac{{v}_{0}}{2}{t}_{1}=\frac{11}{2}¡Á1=5.5m$
ºó5sÎï¿éÏò×óÔ˶¯µÄ¼ÓËÙ¶ÈΪ£º${a}_{2}=\frac{{F}_{2}-¦Ìmg}{m}=\frac{30-25}{5}=1m/{s}^{2}$
ºó5sÏò×óÎ»ÒÆÎª£º${x}_{2}=\frac{1}{2}{a}_{2}{t}_{2}^{2}=\frac{1}{2}¡Á1¡Á{5}^{2}=12.5m$
Îï¿éÔÚ6SÄ©¾à³õʼλÖõľàÀëΪ£º¡÷x=x2-£¨x0+x1£©12.5-£¨5+5.5£©=2m£®
´ð£º£¨1£©Îï¿éÓëˮƽµØÃæÖ®¼äµÄ¶¯Ä¦²ÁÒòÊýΪ0.5£®
£¨2£©³·µôF1ÒÔºó£¬Îï¿éÏòÓÒÔ˶¯ËٶȱäΪÁãµÄʱ¼äÊÇ1s£»
£¨3£©³·µôF1ÒÔºó£¬Îï¿éÔÚ6SÄ©¾à³õʼλÖõľàÀëΪ2m£®
µãÆÀ ¶ÔÓÚÅ£¶ÙµÚ¶þ¶¨ÂɵÄ×ÛºÏÓ¦ÓÃÎÊÌ⣬¹Ø¼üÊÇŪÇå³þÎïÌåµÄÔ˶¯¹ý³ÌºÍÊÜÁ¦Çé¿ö£¬ÀûÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉ»òÔ˶¯Ñ§µÄ¼ÆË㹫ʽÇó½â¼ÓËÙ¶È£¬ÔÙ¸ù¾ÝÌâĿҪÇó½øÐнâ´ð£»ÖªµÀ¼ÓËÙ¶ÈÊÇÁªÏµ¾²Á¦Ñ§ºÍÔ˶¯Ñ§µÄÇÅÁº£®
| A£® | ÖØÁ¦¡¢ÑØÐ±ÃæÏòÏµĻ¬¶¯Ä¦²ÁÁ¦¡¢Ð±ÃæµÄÖ§³ÖÁ¦ | |
| B£® | ÖØÁ¦¡¢ÑØÐ±ÃæÏòÉϵϬ¶¯Ä¦²ÁÁ¦¡¢Ð±ÃæµÄÖ§³ÖÁ¦ | |
| C£® | ÖØÁ¦¡¢ÑØÐ±ÃæÏòϵÄÏ»¬Á¦¡¢ÑØÐ±ÃæÏòÉϵϬ¶¯Ä¦²ÁÁ¦ | |
| D£® | ÖØÁ¦¡¢ÑØÐ±ÃæÏòϵÄÏ»¬Á¦¡¢ÑØÐ±ÃæÏòÉϵÄĦ²ÁÁ¦¡¢Ð±ÃæµÄÖ§³ÖÁ¦ |
| A£® | ¸Ãͬѧ¶ÔµçÌݵذåѹÁ¦µÈÓÚ600 N | B£® | ¸ÃͬѧÌåÖØÐ¡ÓÚ600 N | ||
| C£® | ¸Ãͬѧ¶ÔµçÌݵذåѹÁ¦´óÓÚ600 N | D£® | ¸Ãͬѧ¶ÔµçÌݵذåѹÁ¦Ð¡ÓÚ600 N |
| A£® | n1£ºn2 | B£® | n2£ºn1 | C£® | 1£ºn1n2 | D£® | 1£º1 |
| A£® | $\sqrt{\frac{2g}{D}}$ | B£® | $\frac{\sqrt{2gD}}{d}$ | C£® | $\sqrt{\frac{g}{D}}$ | D£® | $\frac{\sqrt{gD}}{\sqrt{2}d}$ |