ÌâÄ¿ÄÚÈÝ
£¨1£©ÈôÁ£×ÓÔÚÇøÓò¢ñÄÚÔ˶¯Ê±Ç¡ºÃ²»´Ó±ß½çbb'Éä³ö£¬ÇóÁ£×ÓÔÚ¸ÃÇøÓòÄÚµÄÔ˶¯Ê±¼ä£»
£¨2£©ÈôÁ£×Ó¾ÇøÓò¢ñÔ˶¯ºóÇ¡ºÃ´¹Ö±±ß½çbb'ÉäÈëÇøÓò¢ò£¬ÇóÁ£×Ó´Ó¿×O1ÈëÉäËÙ¶ÈvµÄ´óС£»
£¨3£©ÈôÔÚÇøÓò¢òÖÐO1O2ÉÏ·½¼ÓÊúÖ±ÏòϵÄÔÈÇ¿µç³¡£¬O1O2Ï·½¶Ô³Æ¼ÓÊúÖ±ÏòÉϵÄÔÈÇ¿µç³¡£¬³¡Ç¿´óСÏàµÈ£¬Ê¹µÚ£¨2£©ÎÊÖеÄÁ£×Óÿ´Î¾ù´¹Ö±´©¹ý½çbb'ºÍcc'²¢Äܻص½O1µã£¬ÇóÁ£×Ó´ÓO1³ö·¢ÖÁ»Øµ½O1Ô˶¯µÄ×Üʱ¼ä¼°Ëù¼Óµç³¡Ç¿¶ÈµÄ´óС£®
·ÖÎö£º£¨1£©Á£×Ó½øÈë´Å³¡ºó£¬ÔÚÂåÂ××ÈÁ¦×÷ÓÃÏÂ×÷ÔÈËÙÔ²ÖÜÔ˶¯£¬Ç¡ºÃ²»´Ó±ß½çbb'Éä³öʱ¹ì¼£Ç¡ºÃÓë±ß½çbb'ÏàÇУ¬»³ö¹ì¼££¬¸ù¾Ý¼¸ºÎ֪ʶÇó³ö¹ì¼£Ëù¶ÔµÄÔ²ÐĽǦȣ¬ÓÉt=
TÇó³öʱ¼ä£®
£¨2£©Á£×Ó¾ÇøÓò¢ñÔ˶¯ºóÇ¡ºÃ´¹Ö±±ß½çbb'ÉäÈëÇøÓò¢òʱ£¬»³ö¹ì¼££¬½áºÏ¼¸ºÎ¹ØÏµÇó³öÁ£×ӵĹ켣°ë¾¶£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÁ£×Ó´Ó¿×O1ÈëÉäËÙ¶ÈvµÄ´óС£®
£¨3£©Ê¹µÚ£¨2£©ÎÊÖÐËÙ¶ÈΪ¦ÔµÄÁ£×Óÿ´Î¾ù´¹Ö±´©¹ýI¡¢¢ò¡¢¢óÇøÓòµÄ±ß½çÃæ²¢Äܻص½O1µã£¬¸ù¾ÝÒªÇó×÷³öÔ˶¯µÄ¹ì¼£Í¼£¬¸ù¾ÝÁ£×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬½áºÏÔ˶¯µÄÖÜÆÚÐÔÇó³öµç³¡Ç¿¶ÈµÄ´óС£¬½øÈë´Å³¡×öÔÈËÙÔ²ÖÜÔ˶¯£¬Ôڴų¡ÖÐÔ˶¯180¡ã³ö´Å³¡£¬¸ù¾Ý°ë¾¶µÄ´óС¹ØÏµÇó³ö´Å¸ÐӦǿ¶ÈµÄ´óС£®·Ö±ðÇó³öÁ£×ÓÔڵ糡Öкʹų¡ÖÐÔ˶¯µÄʱ¼ä£¬´Ó¶øÇó³ö×Üʱ¼ä£®
| ¦È |
| 2¦Ð |
£¨2£©Á£×Ó¾ÇøÓò¢ñÔ˶¯ºóÇ¡ºÃ´¹Ö±±ß½çbb'ÉäÈëÇøÓò¢òʱ£¬»³ö¹ì¼££¬½áºÏ¼¸ºÎ¹ØÏµÇó³öÁ£×ӵĹ켣°ë¾¶£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÁ£×Ó´Ó¿×O1ÈëÉäËÙ¶ÈvµÄ´óС£®
£¨3£©Ê¹µÚ£¨2£©ÎÊÖÐËÙ¶ÈΪ¦ÔµÄÁ£×Óÿ´Î¾ù´¹Ö±´©¹ýI¡¢¢ò¡¢¢óÇøÓòµÄ±ß½çÃæ²¢Äܻص½O1µã£¬¸ù¾ÝÒªÇó×÷³öÔ˶¯µÄ¹ì¼£Í¼£¬¸ù¾ÝÁ£×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬½áºÏÔ˶¯µÄÖÜÆÚÐÔÇó³öµç³¡Ç¿¶ÈµÄ´óС£¬½øÈë´Å³¡×öÔÈËÙÔ²ÖÜÔ˶¯£¬Ôڴų¡ÖÐÔ˶¯180¡ã³ö´Å³¡£¬¸ù¾Ý°ë¾¶µÄ´óС¹ØÏµÇó³ö´Å¸ÐӦǿ¶ÈµÄ´óС£®·Ö±ðÇó³öÁ£×ÓÔڵ糡Öкʹų¡ÖÐÔ˶¯µÄʱ¼ä£¬´Ó¶øÇó³ö×Üʱ¼ä£®
½â´ð£º
½â£º£¨1£©Á£×ÓÇ¡ºÃ²»´Ó±ß½çbb¡äÉä³ö£¬¹ì¼£Èç×óͼËùʾ
t=
T1 ¢Ù
T1=
¢Ú
ÓÉ¢Ù¡¢¢Úʽ½âµÃ£ºt=
£¨2£©´¹Ö±±ß½çbb'Éä³öµÄ¹ì¼£ÈçͼËùʾ£¬×ª¹ýµÄÔ²ÐĽǵ㺦È=60¡ã
Óɼ¸ºÎ¹ØÏµ¿ÉÖª£ºd=Rsin60¡ã
µÃ£ºR=
d ¢Û
ÓÉqvB=m
µÃ£ºv=
¢Ü
°Ñ¢Ûʽ´úÈˢܵãºv=
£¨3£©ÔÚÇøÓò¢óÖУºR¡ä=
£¬²ÅÄÜ·µ»ØÇøÓò¢ò£¬
Ôò B¡ä=2B
tµç=
=
t´Å=
+
=
Ôò t=tµç+t´Å=
+
ÉèÔÚÇøÓò¢òÖÐO1O2ÉÏ·½¼ÓÊúÖ±ÏòϵÄÔÈÇ¿µç³¡Ë®Æ½ÎªÎ»ÒÆÎªx£¬Ô˶¯Ê±¼äΪt£¬ÄÜ´¹Ö±±ß½ç½øÈëÇøÓò¢ó£¬ÔòÓ¦Âú×㣺
=
at2=
t2 ¢Ý
x=vt ¢Þ
£¨2n+1£©¡Á2x=d £¨n=0¡¢1¡¢2¡¢3¡£© ¢ß
ÓɢۢݢޢßʽµÃ£ºE=
£¨n=0¡¢1¡¢2¡¢3¡£©
ÁíÍâÇóʱ¼ätÒ²¿ÉÓãº
t=
¡Á
=
=
¢à
ÓɢۢݢàʽµÃ£ºE=
£¨n=0¡¢1¡¢2¡¢3¡£©
´ð£º£¨1£©Á£×ÓÔÚ¸ÃÇøÓòÄÚµÄÔ˶¯Ê±¼äΪ
£»£¨2£©Á£×Ó´Ó¿×O1ÈëÉäËÙ¶ÈvµÄ´óСΪ
£»
£¨3£©Á£×Ó´ÓO1³ö·¢ÖÁ»Øµ½O1Ô˶¯µÄ×Üʱ¼äΪ
£¬Ëù¼Óµç³¡Ç¿¶ÈµÄ´óСΪ
£¨n=0¡¢1¡¢2¡¢3¡£©£®
t=
| 5 |
| 6 |
T1=
| 2¦Ðm |
| qB |
ÓÉ¢Ù¡¢¢Úʽ½âµÃ£ºt=
| 5¦Ðm |
| 3qB |
£¨2£©´¹Ö±±ß½çbb'Éä³öµÄ¹ì¼£ÈçͼËùʾ£¬×ª¹ýµÄÔ²ÐĽǵ㺦È=60¡ã
Óɼ¸ºÎ¹ØÏµ¿ÉÖª£ºd=Rsin60¡ã
µÃ£ºR=
2
| ||
| 3 |
ÓÉqvB=m
| v2 |
| R |
| RqB |
| m |
°Ñ¢Ûʽ´úÈˢܵãºv=
2
| ||
| 3m |
£¨3£©ÔÚÇøÓò¢óÖУºR¡ä=
| R |
| 2 |
Ôò B¡ä=2B
tµç=
| 2d |
| v |
| ||
| Bq |
t´Å=
| T1 |
| 3 |
| T2 |
| 2 |
| 7m¦Ð |
| 6Bq |
Ôò t=tµç+t´Å=
| ||
| Bq |
| 7m¦Ð |
| 6Bq |
ÉèÔÚÇøÓò¢òÖÐO1O2ÉÏ·½¼ÓÊúÖ±ÏòϵÄÔÈÇ¿µç³¡Ë®Æ½ÎªÎ»ÒÆÎªx£¬Ô˶¯Ê±¼äΪt£¬ÄÜ´¹Ö±±ß½ç½øÈëÇøÓò¢ó£¬ÔòÓ¦Âú×㣺
| R |
| 2 |
| 1 |
| 2 |
| Eq |
| 2m |
x=vt ¢Þ
£¨2n+1£©¡Á2x=d £¨n=0¡¢1¡¢2¡¢3¡£© ¢ß
ÓɢۢݢޢßʽµÃ£ºE=
32
| ||
| 9m |
ÁíÍâÇóʱ¼ätÒ²¿ÉÓãº
t=
| 1 |
| 2 |
| tµç |
| 2(2n+1) |
| ||||
| 4(2n+1) |
| ||
| 4(2n+1)qB |
ÓɢۢݢàʽµÃ£ºE=
32
| ||
| 9m |
´ð£º£¨1£©Á£×ÓÔÚ¸ÃÇøÓòÄÚµÄÔ˶¯Ê±¼äΪ
| 5¦Ðm |
| 3qB |
2
| ||
| 3m |
£¨3£©Á£×Ó´ÓO1³ö·¢ÖÁ»Øµ½O1Ô˶¯µÄ×Üʱ¼äΪ
| ||
| 4(2n+1)qB |
32
| ||
| 9m |
µãÆÀ£º´øµçÁ£×ÓÔÚÔÈÇ¿´Å³¡ÖеÄÔ˶¯ÊÇÕû¸ö¸ßÖеÄÖØµã£¬Ò²ÊǸ߿¼µÄ±Ø¿¼µÄÄÚÈÝ£¬Á£×ÓµÄÔ˶¯¹ý³ÌµÄ·ÖÎöÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿