ÌâÄ¿ÄÚÈÝ
14£®| A£® | 0¡«x1¶Î£¬ÎïÌå×ö¼ÓËٶȼõСµÄ¼ÓËÙÔ˶¯ | |
| B£® | x1¡«x2¶Î£¬ÎïÌå×ö¼ÓËٶȼõСµÄ¼ÓËÙÔ˶¯ | |
| C£® | 0¡«x1¶Î£¬ÎïÌåµÄƽ¾ùËÙ¶ÈΪ$\frac{{v}_{0}}{3}$ | |
| D£® | 0¡«x2¶Î£¬ÎïÌåµÄƽ¾ùËÙ¶ÈΪ$\frac{{v}_{0}}{2}$ |
·ÖÎö ¶ÔÕÕÔȱäËÙÖ±ÏßÔ˶¯µÄ¹«Ê½v2=2ax¿É·ÖÎö0¡«x1¶Î£¬ÎïÌå×öÔȼÓËÙÔ˶¯£®¸ù¾Ýx1¡«x2¶ÎͼÏóµÄбÂÊ·ÖÎöÎïÌåµÄÔ˶¯Çé¿ö£®ÔÙ½øÒ»²½Ç󯽾ùËÙ¶È£®
½â´ð ½â£ºA¡¢0¡«x1¶ÎµÄͼÏßΪһ¶¥µãÔÚԵ㣬¿ª¿ÚÏòÓÒµÄÅ×ÎïÏߵIJ¿·Ö£¬ÓÉÊýѧ֪ʶ¿ÉµÃ£ºv2=2Px£®¶ÔÕÕÔȱäËÙÖ±ÏßÔ˶¯µÄ¹«Ê½v2=2ax¿É¼ÓËÙ¶ÈÒ»¶¨£¬Ôò0¡«x1¶Î£¬ÎïÌå×öÔȼÓËÙÔ˶¯£®¹ÊA´íÎó£®
B¡¢x1¡«x2¶ÎͼÏßΪֱÏߣ¬ÔòÓУºk=$\frac{¡÷v}{¡÷x}$=$\frac{¡÷v}{¡÷t}$•$\frac{¡÷t}{¡÷x}$=$\frac{a}{v}$£¬µÃ£ºa=kv£¬vÔö´ó£¬aÔö´ó£¬¿ÉÖªÎïÌå×ö¼ÓËÙ¶ÈÔö´óµÄ¼ÓËÙÔ˶¯£¬¹ÊB´íÎó£®
C¡¢0¡«x1¶Î£¬ÎïÌå×öÔȼÓËÙÖ±ÏßÔ˶¯£¬Æ½¾ùËÙ¶ÈΪ£º$\overline{v}$=$\frac{0+\frac{2}{3}{v}_{0}}{2}$=$\frac{{v}_{0}}{3}$£¬¹ÊCÕýÈ·£®
D¡¢0¡«x2¶Î£¬ÎïÌå×öµÄ²»ÊÇÔȱäËÙÖ±ÏßÔ˶¯£¬Æäƽ¾ùËٶȲ»µÈÓÚ$\frac{{v}_{0}}{2}$£®¹ÊD´íÎó£®
¹ÊÑ¡£ºC
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÒª¸ù¾ÝÊýѧ֪ʶµÃ³öaÓëvµÄ¹ØÏµ£¬´Ó¶ø·ÖÎö³öÎïÌåµÄÔ˶¯ÐÔÖÊ£®ÒªÖªµÀƽ¾ùËٶȹ«Ê½$\overline{v}$=$\frac{{v}_{0}+v}{2}$Ö»ÊÊÓÃÓÚÔȱäËÙÖ±ÏßÔ˶¯£®
| A£® | 27 | B£® | $\frac{1}{27}$ | C£® | 9 | D£® | $\frac{1}{9}$ |
| A£® | T1=2T2 | B£® | 2T1=T2 | C£® | v1=2v2 | D£® | 2v1=v2 |
| A£® | »¬¿éÔÚ0¡«10 sÄ򵀮½¾ùËٶȵÈÓÚ10¡«20 sÄ򵀮½¾ùËÙ¶È | |
| B£® | »¬¿éÔÚ0¡«30 sÄÚµÄÎ»ÒÆ×î´ó | |
| C£® | »¬¿éÔÚ10¡«20 sÄڵļÓËÙ¶ÈÓë20¡«30 sÄڵļÓËٶȵȴó·´Ïò | |
| D£® | »¬¿éÔÚ10¡«20 sÄÚµÄÎ»ÒÆÓë20¡«30 sÄÚµÄÎ»ÒÆµÈ´ó·´Ïò |
| A£® | ËüÊÇ¿ÉÔÙÉúÄÜÔ´ | |
| B£® | ËüÖ»ÄÜͨ¹ýÖØºËÁѱä»ñµÃ | |
| C£® | ËüÊÇÔ×Ӻ˽ṹ·¢Éú±ä»¯Ê±·Å³öµÄÄÜÁ¿ | |
| D£® | ÖØºËÁѱäµÄ·´Ó¦ËÙ¶ÈÎÞ·¨¿ØÖÆ |